Show simple item record

Characterizing the Geometry and Quantifying the Impact of Nanoscopic Electrocatalyst/Semiconductor Interfaces under Solar Water Splitting Conditions

dc.contributor.authorHemmerling, John R.
dc.contributor.authorMathur, Aarti
dc.contributor.authorLinic, Suljo
dc.date.accessioned2022-04-08T18:07:56Z
dc.date.available2023-04-08 14:07:53en
dc.date.available2022-04-08T18:07:56Z
dc.date.issued2022-03
dc.identifier.citationHemmerling, John R.; Mathur, Aarti; Linic, Suljo (2022). "Characterizing the Geometry and Quantifying the Impact of Nanoscopic Electrocatalyst/Semiconductor Interfaces under Solar Water Splitting Conditions." Advanced Energy Materials 12(11): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/172090
dc.description.abstractThe materials that are receiving the most attention in photoelectrochemical water splitting are metallic nanoparticle electrocatalysts (np‐EC) attached to the surface of a semiconductor (SC) light absorber. In these multicomponent systems, the interface between the semiconductor and electrocatalysts critically affects performance. However, the np‐EC/SC interface remains poorly understood as it is complex on atomic scales, dynamic under reaction conditions, and inaccessible to direct experimental probes. This contribution sheds light on how the electrocatalyst/semiconductor interface evolves under reaction conditions by investigating the behavior of nickel electrocatalysts (as nanoparticles and films) deposited on silicon semiconductors. Rigorous electrochemical experiments, interfacial atomistic characterization, and computational modeling are combined to demonstrate critical links between the atomistic features of the interface and the overall performance. It is shown that electrolyte‐induced atomistic changes to the interface lead to (1) modulation of the charge carrier fluxes and a dramatic decrease in the electron/hole recombination rates and (2) a change in the barrier height of the interface. Furthermore, the critical roles of nonidealities and electrocatalyst coverage due to interfacial geometry are explored. Each of these factors must be considered to optimize the design of metal/semiconductor interfaces which are broadly applicable to photoelectrocatalysis and photovoltaic research.Electrochemical testing, atomic interfacial characterization, and computation modeling are used to elucidate the role of electrocatalyst/semiconductor interfaces under photoelectrochemical water oxidation conditions. The mechanisms by which the interface impacts the photovoltage, and the critical design parameters that must be optimized to improve performance, are unearthed. Light is also shed on the impact of operating conditions on the interface.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinterfacial physics
dc.subject.othersolar water splitting
dc.subject.otherphotoelectrochemistry
dc.subject.othernanoparticles
dc.titleCharacterizing the Geometry and Quantifying the Impact of Nanoscopic Electrocatalyst/Semiconductor Interfaces under Solar Water Splitting Conditions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172090/1/aenm202103798_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172090/2/aenm202103798-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172090/3/aenm202103798.pdf
dc.identifier.doi10.1002/aenm.202103798
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceR. T. (董梓則) Tung, Appl. Phys. Rev. 2014, 1, 011304.
dc.identifier.citedreferenceP. Nunez, M. Cabán‐Acevedo, W. Yu, M. H. Richter, K. Kennedy, A. M. Villarino, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. C 2021, 125, 17660.
dc.identifier.citedreferenceK. Oh, C. Mériadec, B. Lassalle‐Kaiser, V. Dorcet, B. Fabre, S. Ababou‐Girard, L. Joanny, F. Gouttefangeas, G. Loget, Energy Environ. Sci. 2018, 11, 2590.
dc.identifier.citedreferenceS. A. Lee, T. H. Lee, C. Kim, M. G. Lee, M.‐J. Choi, H. Park, S. Choi, J. Oh, H. W. Jang, ACS Catal. 2018, 8, 7261.
dc.identifier.citedreferenceM. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, Science 2013, 342, 836.
dc.identifier.citedreferenceF. A. L. Laskowski, M. R. Nellist, R. Venkatkarthick, S. W. Boettcher, Energy Environ. Sci. 2017, 10, 570.
dc.identifier.citedreferenceS. A. Lee, I. J. Park, J. W. Yang, J. Park, T. H. Lee, C. Kim, J. Moon, J. Y. Kim, H. W. Jang, Cell Rep. Phys. Sci. 2020, 1, 100219.
dc.identifier.citedreferenceS. Anantharaj, S. Kundu, S. Noda, Nano Energy 2021, 80, 105514.
dc.identifier.citedreferenceZ. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
dc.identifier.citedreferenceE. H. Rhoderick, IEE Proc., Part I: Solid‐State and Electron Devices 1982, 129, 1.
dc.identifier.citedreferenceJ. Hemmerling, J. Quinn, S. Linic, Adv. Energy Mater. 2020, 10, 1903354.
dc.identifier.citedreferenceJ. Quinn, J. Hemmerling, S. Linic, ACS Catal. 2018, 8, 8545.
dc.identifier.citedreferenceJ. Quinn, J. Hemmerling, S. Linic, ACS Energy Lett. 2019, 4, 2632.
dc.identifier.citedreferenceI. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, W. A. Smith, J. Phys. Chem. C 2018, 122, 5462.
dc.identifier.citedreferenceR. C. Rossi, N. S. Lewis, J. Phys. Chem. B 2001, 105, 12303.
dc.identifier.citedreferenceL. F. Wagner, R. W. Young, A. Sugerman, IEEE Electron Device Lett. 1983, 4, 320.
dc.identifier.citedreferenceC.‐H. Lu, G. M. T. Wong, R. Birringer, R. Dauskardt, M. D. Deal, B. M. Clemens, Y. Nishi, J. Appl. Phys. 2010, 107, 063710.
dc.identifier.citedreferenceH. C. Card, E. H. Rhoderick, J. Phys. D: Appl. Phys. 1971, 4, 1589.
dc.identifier.citedreferenceJ. Robertson, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process. Meas., Phenom. 2000, 18, 1785.
dc.identifier.citedreferenceL. C. Olsen, Solid‐State Electron. 1977, 20, 741.
dc.identifier.citedreferenceH. C. Card, Solid State Commun. 1974, 14, 1011.
dc.identifier.citedreferenceJ. C. Hill, A. T. Landers, J. A. Switzer, Nat. Mater. 2015, 14, 1150.
dc.identifier.citedreferenceD. Liu, T. Jiang, D. Liu, W. Zhang, H. Qin, S. Yan, Z. Zou, ChemSusChem 2020, 13, 6037.
dc.identifier.citedreferenceQ. Cai, W. Hong, C. Jian, W. Liu, Nanoscale 2020, 12, 7550.
dc.identifier.citedreferenceG. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, Z. Zou, ChemSusChem 2017, 10, 2897.
dc.identifier.citedreferenceG. Loget, B. Fabre, S. Fryars, C. Mériadec, S. Ababou‐Girard, ACS Energy Lett. 2017, 2, 569.
dc.identifier.citedreferenceS. Li, G. She, C. Chen, S. Zhang, L. Mu, X. Guo, W. Shi, ACS Appl. Mater. Interfaces 2018, 10, 8594.
dc.identifier.citedreferenceS. Zhong, Y. Xi, Q. Chen, J. Chen, S. Bai, Nanoscale 2020, 12, 5764.
dc.identifier.citedreferenceS. A. Lee, S. Choi, C. Kim, J. W. Yang, S. Y. Kim, H. W. Jang, ACS Mater. Lett. 2020, 2, 107.
dc.identifier.citedreferenceZ. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.
dc.identifier.citedreferenceJ. R. Hemmerling, A. Mathur, S. Linic, Acc. Chem. Res. 2021, 54, 1992.
dc.identifier.citedreferenceS. Cao, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Energy Technol. 2021, 9, 2000819.
dc.identifier.citedreferenceS. M. Thalluri, L. Bai, C. Lv, Z. Huang, X. Hu, L. Liu, Adv. Sci. 2020, 7, 1902102.
dc.identifier.citedreferenceY. Kuang, T. Yamada, K. Domen, Joule 2017, 1, 290.
dc.identifier.citedreferenceY. Chen, X. Feng, X. Guo, W. Zheng, Curr. Opin. Green Sustainable Chem. 2019, 17, 21.
dc.identifier.citedreferenceJ. Zhang, J. Cui, S. Eslava, Adv. Energy Mater. 2021, 11, 2003111.
dc.identifier.citedreferenceC.‐W. Tung, T.‐R. Kuo, C.‐S. Hsu, Y. Chuang, H.‐C. Chen, C.‐K. Chang, C.‐Y. Chien, Y.‐J. Lu, T.‐S. Chan, J.‐F. Lee, J.‐Y. Li, H. M. Chen, Adv. Energy Mater. 2019, 9, 1901308.
dc.identifier.citedreferenceF. Lin, S. W. Boettcher, Nat. Mater. 2014, 13, 81.
dc.identifier.citedreferenceS. Chen, L.‐W. Wang, Chem. Mater. 2012, 24, 3659.
dc.identifier.citedreferenceM. T. Greiner, M. G. Helander, Z.‐B. Wang, W.‐M. Tang, Z.‐H. Lu, J. Phys. Chem. C 2010, 114, 19777.
dc.identifier.citedreferenceA. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, ACS Catal. 2020, 10, 463.
dc.identifier.citedreferenceF. A. L. Laskowski, S. Z. Oener, M. R. Nellist, A. M. Gordon, D. C. Bain, J. L. Fehrs, S. W. Boettcher, Nat. Mater. 2020, 19, 69.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.