Show simple item record

Evaluation of High Mountain Asia‐Land Data Assimilation System (Version 1) From 2003 to 2016: 2. The Impact of Assimilating Satellite‐Based Snow Cover and Freeze/Thaw Observations Into a Land Surface Model

dc.contributor.authorXue, Yuan
dc.contributor.authorHouser, Paul R.
dc.contributor.authorMaggioni, Viviana
dc.contributor.authorMei, Yiwen
dc.contributor.authorKumar, Sujay V.
dc.contributor.authorYoon, Yeosang
dc.date.accessioned2022-04-08T18:08:55Z
dc.date.available2023-05-08 14:08:52en
dc.date.available2022-04-08T18:08:55Z
dc.date.issued2022-04-16
dc.identifier.citationXue, Yuan; Houser, Paul R.; Maggioni, Viviana; Mei, Yiwen; Kumar, Sujay V.; Yoon, Yeosang (2022). "Evaluation of High Mountain Asia‐Land Data Assimilation System (Version 1) From 2003 to 2016: 2. The Impact of Assimilating Satellite‐Based Snow Cover and Freeze/Thaw Observations Into a Land Surface Model." Journal of Geophysical Research: Atmospheres 127(7): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/172106
dc.description.abstractThis second paper of the two‐part series focuses on demonstrating the impact of assimilating satellite‐based snow cover and freeze/thaw observations into the hyper‐resolution, offline terrestrial modeling system used for the High Mountain Asia (HMA) region from 2003 to 2016. To this end, this study systematically evaluates a total of six sets of 0.01° (∼1 km) model simulations forced by different precipitation forcings, with and without the dual assimilation scheme enabled, at point‐scale, basin‐scale, and domain‐scale. The key variables of interest include surface net shortwave radiation, surface net longwave radiation, skin temperature, near‐surface soil temperature, snow depth, snow water equivalent (SWE), and total runoff. First, the point‐scale assessment is mainly conducted via evaluating against ground‐based measurements. In general, the assimilation enabled estimates are better than no‐assimilation counterparts. Second, the basin‐scale runoff assessment demonstrates that across three snow‐dominated basins, the assimilation enabled experiment yields systematic improvements in all goodness‐of‐fit statistics through mitigating the negative effects brought by the fixed long‐term precipitation correction factors. For example, when forced by the bias‐corrected precipitation, the assimilation‐enabled experiment improves the bias by 69%, the root‐mean‐squared error by 30%, and the unbiased root‐mean‐squared error by 18% (relative to the no‐assimilation counterpart). Finally, the domain‐scale assessment is conducted via evaluating against satellite‐based SWE and skin temperature products. Both sets of domain‐scale analysis further corroborate the findings in the point‐scale evaluations. Overall, this study suggests the benefits of the proposed multi‐variate assimilation system in improving the cryospheric‐hydrological process within a land surface model for use in HMA.Key PointsThe skills of the High Mountain Asia‐Land Data Assimilation System (version 1) with and without multi‐variate assimilation are presentedThe assimilation enabled experiments generally perform better than the no‐assimilation counterpartsThe assimilation enabled experiments mitigate the negative effects arising from the fixed long‐term precipitation correction factors
dc.publisherNational Snow and Ice Data Center
dc.publisherWiley Periodicals, Inc.
dc.titleEvaluation of High Mountain Asia‐Land Data Assimilation System (Version 1) From 2003 to 2016: 2. The Impact of Assimilating Satellite‐Based Snow Cover and Freeze/Thaw Observations Into a Land Surface Model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172106/1/jgrd57730_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172106/2/jgrd57730.pdf
dc.identifier.doi10.1029/2021JD035992
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRodell, M., & Houser, P. ( 2004 ). Updating a land surface model with MODIS‐derived snow cover. Journal of Hydrometeorology, 5 ( 6 ), 1064 – 1075. https://doi.org/10.1175/jhm-395.1
dc.identifier.citedreferenceGLIMS & NSIDC. ( 2005 ). Global Land Ice Measurements from Space glacier database (2005, updated 2018). [Data Set]. Compiled and made available by the International Glims Community and the National Snow and Ice Data Center. https://doi.org/10.7265/N5V98602
dc.identifier.citedreferenceGuo, Z., Dirmeyer, P. A., Hu, Z.‐Z., Gao, X., & Zhao, M. ( 2006 ). Evaluation of the second global soil wetness project soil moisture simulations: 2. Sensitivity to external meteorological forcing. Journal of Geophysical Research: Atmospheres, 111 ( D22 ). https://doi.org/10.1029/2006jd007845
dc.identifier.citedreferenceHall, D., & Riggs, G. ( 2016 ). MODIS/Terra snow cover daily L3 global 500 m grid, version 6. Boulder, Colorado USA: National Snow and Ice Data Center.
dc.identifier.citedreferenceHofmann, E., & Friedrichs, M. ( 2001 ). Biogeochemical data assimilation. In J. H. Steele (Ed.), Encyclopedia of ocean sciences (pp. 302 – 308 ). Oxford: Academic Press. Retrieved from https://www.sciencedirect.com/science/article/pii/B012227430X004104
dc.identifier.citedreferenceKidd, C., & Huffman, G. ( 2011 ). Global precipitation measurement. Meteorological Applications, 18 ( 3 ), 334 – 353. https://doi.org/10.1002/met.284
dc.identifier.citedreferenceKim, Y., Kimball, J., Glassy, J., & McDonald, K. ( 2018 ). Measures Northern Hemisphere polar EASE‐grid 2.0 daily 6 km land freeze/thaw status from AMSR‐E and AMSR2, version 1. Boulder, Colorado USA: National Snow and Ice Data Center.
dc.identifier.citedreferenceKim, Y., Kimball, J. S., Glassy, J., & Du, J. ( 2017 ). An extended global Earth system data record on daily landscape freeze‐thaw status determined from satellite passive microwave remote sensing. Earth System Science Data, 9 ( 1 ), 133 – 147. https://doi.org/10.5194/essd-9-133-2017
dc.identifier.citedreferenceMaggioni, V., Nikolopoulos, E. I., Anagnostou, E. N., & Borga, M. ( 2017 ). Modeling satellite precipitation errors over mountainous terrain: The influence of gauge density, seasonality, and temporal resolution. IEEE Transactions on Geoscience and Remote Sensing, 55 ( 7 ), 4130 – 4140. https://doi.org/10.1109/tgrs.2017.2688998
dc.identifier.citedreferenceMendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L., Abramowitz, G., & Gupta, H. ( 2015 ). Are we unnecessarily constraining the agility of complex process‐based models? Water Resources Research, 51 ( 1 ), 716 – 728. https://doi.org/10.1002/2014wr015820
dc.identifier.citedreferenceNandakumar, N., & Mein, R. G. ( 1997 ). Uncertainty in rainfall—Runoff model simulations and the implications for predicting the hydrologic effects of land‐use change. Journal of Hydrology, 192 ( 1–4 ), 211 – 232. https://doi.org/10.1016/s0022-1694(96)03106-x
dc.identifier.citedreferencePulliainen, J. ( 2006 ). Mapping of snow water equivalent and snow depth in boreal and sub‐arctic zones by assimilating space‐borne microwave radiometer data and ground‐based observations. Remote Sensing of Environment, 101 ( 2 ), 257 – 269. https://doi.org/10.1016/j.rse.2006.01.002
dc.identifier.citedreferenceReichle, R. H., Kumar, S. V., Mahanama, S. P., Koster, R. D., & Liu, Q. ( 2010 ). Assimilation of satellite‐derived skin temperature observations into land surface models. Journal of Hydrometeorology, 11 ( 5 ), 1103 – 1122. https://doi.org/10.1175/2010jhm1262.1
dc.identifier.citedreferenceTakala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J. P., et al. ( 2011 ). Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space‐borne radiometer data and ground‐based measurements. Remote Sensing of Environment, 115 ( 12 ), 3517 – 3529. https://doi.org/10.1016/j.rse.2011.08.014
dc.identifier.citedreferenceWan, Z., Hook, S. J., & Hulley, G. C. ( 2015 ). MODIS/Terra land surface temperature/emissivity daily L3 global 1 km grid, version 6. NASA EOSDIS LP DAAC.
dc.identifier.citedreferenceXue, Y., Houser, P. R., Maggioni, V., Mei, Y., Kumar, S. V., & Yoon, Y. ( 2019 ). Assimilation of satellite‐based snow cover and freeze/thaw observations over High Mountain Asia. Frontiers in Earth Science, 7, 115. https://doi.org/10.3389/feart.2019.00115
dc.identifier.citedreferenceXue, Y., Houser, P. R., Maggioni, V., Mei, Y., Kumar, S. V., & Yoon, Y. ( 2021 ). Evaluation of High Mountain Asia‐Land Data Assimilation System (version 1) from 2003 to 2016, part I: A hyper‐resolution terrestrial modeling system. Journal of Geophysical Research: Atmospheres, 126, e2020JD034131. https://doi.org/10.1029/2020JD034131
dc.identifier.citedreferenceYang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., et al. ( 2013 ). A multiscale soil moisture and freeze‐thaw monitoring network on the third pole. Bulletin of the American Meteorological Society, 94 ( 12 ), 1907 – 1916. https://doi.org/10.1175/bams-d-12-00203.1
dc.identifier.citedreferenceYilmaz, K. K., Gupta, H. V., & Wagener, T. ( 2008 ). A process‐based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research, 44 ( 9 ). https://doi.org/10.1029/2007wr006716
dc.identifier.citedreferenceYilmaz, K. K., Hogue, T. S., Hsu, K.‐l., Sorooshian, S., Gupta, H. V., & Wagener, T. ( 2005 ). Intercomparison of rain gauge, radar, and satellite‐based precipitation estimates with emphasis on hydrologic forecasting. Journal of Hydrometeorology, 6 ( 4 ), 497 – 517. https://doi.org/10.1175/jhm431.1
dc.identifier.citedreferenceYoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B., Kwon, Y., Qian, Y., et al. ( 2019 ). Evaluating the uncertainty of terrestrial water budget components over High Mountain Asia. Frontiers in Earth Science, 7, 120. https://doi.org/10.3389/feart.2019.00120
dc.identifier.citedreferenceZheng, D., Van der Velde, R., Su, B., Wen, J., & Wang, X. ( 2017 ). Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research: Atmospheres, 122, 1488 – 1504. https://doi.org/10.1002/2016JD025572
dc.identifier.citedreferenceArsenault, K. R., Houser, P. R., De Lannoy, G. J., & Dirmeyer, P. A. ( 2013 ). Impacts of snow cover fraction data assimilation on modeled energy and moisture budgets. Journal of Geophysical Research: Atmospheres, 118 ( 14 ), 7489 – 7504. https://doi.org/10.1002/jgrd.50542
dc.identifier.citedreferenceBeck, H. E., Wood, E. F., McVicar, T. R., Zambrano‐Bigiarini, M., Alvarez‐Garreton, C., Baez‐Villanueva, O. M., et al. ( 2020 ). Bias correction of global high‐resolution precipitation climatologies using streamflow observations from 9372 catchments. Journal of Climate, 33 ( 4 ), 1299 – 1315. https://doi.org/10.1175/jcli-d-19-0332.1
dc.identifier.citedreferenceFarhadi, L., Reichle, R. H., De Lannoy, G. J., & Kimball, J. S. ( 2015 ). Assimilation of freeze‐thaw observations into the NASA catchment land surface model. Journal of Hydrometeorology, 16 ( 2 ), 730 – 743. https://doi.org/10.1175/jhm-d-14-0065.1
dc.identifier.citedreferenceGehne, M., Hamill, T. M., Kiladis, G. N., & Trenberth, K. E. ( 2016 ). Comparison of global precipitation estimates across a range of temporal and spatial scales. Journal of Climate, 29 ( 21 ), 7773 – 7795. https://doi.org/10.1175/jcli-d-15-0618.1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.