Show simple item record

GaN‐Based Deep‐Nano Structures: Break the Efficiency Bottleneck of Conventional Nanoscale Optoelectronics

dc.contributor.authorNavid, Ishtiaque Ahmed
dc.contributor.authorPandey, Ayush
dc.contributor.authorGoh, Yin Min
dc.contributor.authorSchwartz, Jonathan
dc.contributor.authorHovden, Robert
dc.contributor.authorMi, Zetian
dc.date.accessioned2022-04-08T18:09:05Z
dc.date.available2023-04-08 14:09:02en
dc.date.available2022-04-08T18:09:05Z
dc.date.issued2022-03
dc.identifier.citationNavid, Ishtiaque Ahmed; Pandey, Ayush; Goh, Yin Min; Schwartz, Jonathan; Hovden, Robert; Mi, Zetian (2022). "GaN‐Based Deep‐Nano Structures: Break the Efficiency Bottleneck of Conventional Nanoscale Optoelectronics." Advanced Optical Materials 10(5): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/172109
dc.description.abstractConventional semiconducting nanowire optoelectronic devices generally exhibit low efficiency, due to dominant nonradiative surface recombination. Here, it is shown that such a critical challenge can be potentially addressed by exploiting semiconducting structures in the deep‐nanoregime. The epitaxy and structural and optical characteristics of GaN‐based micro‐network nanostructures grown on Si wafer are studied. These complex nanostructures have lateral dimensions as small as a few nanometers. Detailed scanning transmission electron microscopy studies suggest that the self‐assembled micro‐network nanostructures are monocrystalline, despite the porous nature. Significantly, such micro‐network nanostructures exhibit ultrabright emission in the visible spectrum. Compared to conventional InGaN nanowire structures with similar surface area, the surface recombination velocity of such deep‐nanostructures is reduced by nearly two orders of magnitude, which is evidenced by the extremely bright luminescence emission as well as the long carrier lifetime measured under low excitation conditions. This study offers a new path for the design and development of next generation high efficiency nanoscale optoelectronic devices.A detailed study of the epitaxy and characterization of GaN/InGaN micro‐network structures in the deep‐nanoregime is performed. These strain‐relaxed micro‐network nanostructures show negligible nonradiative surface recombination and remarkable enhancement in exciton oscillator strength. As such, they exhibit significantly reduced surface recombination velocity compared to nanowires evidenced by drastically enhanced photoluminescence intensity and long carrier lifetime at room temperature.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurface recombination
dc.subject.otherexcitons
dc.subject.otherlight emitting devices
dc.subject.othernanostructures
dc.subject.othersemiconductors
dc.titleGaN‐Based Deep‐Nano Structures: Break the Efficiency Bottleneck of Conventional Nanoscale Optoelectronics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172109/1/adom202102263.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172109/2/adom202102263-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172109/3/adom202102263_am.pdf
dc.identifier.doi10.1002/adom.202102263
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceS. Zhang, A. T. Connie, D. A. Laleyan, H. P. T. Nguyen, Q. Wang, J. Song, I. Shih, Z. Mi, IEEE J. Quantum Electron. 2014, 50, 483.
dc.identifier.citedreferencea) M. S. Kang, C.‐H. Lee, J. B. Park, H. Yoo, G.‐C. Yi, Nano Energy 2012, 1, 391; b) C.‐H. Lee, Y.‐J. Kim, Y. J. Hong, S.‐R. Jeon, S. Bae, B. H. Hong, G.‐C. Yi, Adv. Mater. 2011, 23, 4614; c) Y. Wang, H. Sun, Prog. Quantum. Electron. 2018, 60, 1; d) J. M. P. Almeida, V. Tribuzi, R. D. Fonseca, A. J. G. Otuka, P. H. D. Ferreira, V. R. Mastelaro, P. Brajato, A. C. Hernandes, A. Dev, T. Voss, D. S. Correa, C. R. Mendonca, Opt. Mater. 2013, 35, 2643; e) K. Yu, J. Chen, Nanoscale Res. Lett. 2009, 4, 1; f) E. Y. Chen, C. Milleville, J. M. O. Zide, M. F. Doty, J. Zhang, MRS Energy Sustain. 2019, 5, 1. g) J. Park, H. Ryu, T. Son, S. Yeon, Appl. Phys. Express 2012, 5, 101201; h) L. Sang, J. Hu, R. Zou, Y. Koide, M. Liao, Sci. Rep. 2013, 3, 2368; i) P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M. L. Brongersma, Nat. Photonics 2012, 6, 380; j) F.‐X. Liang, J.‐Z. Wang, Z.‐P. Li, L.‐B. Luo, Adv. Opt. Mater. 2017, 5, 1700081; k) D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, Nat. Photonics 2013, 7, 963.
dc.identifier.citedreferencea) C.‐C. Chang, C.‐Y. Chi, M. Yao, N. Huang, C.‐C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.‐W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, S. B. Cronin, Nano Lett. 2012, 12, 4484; b) Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, K. B. Crozier, Nano Lett. 2011, 11, 2527; c) A. Higuera‐Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. v. Veldhoven, W. M. M. Kessels, M. K. Smit, A. Fiore, Nano Lett. 2017, 17, 2627.
dc.identifier.citedreferencea) T. Lin, H. C. Kuo, X. D. Jiang, Z. C. Feng, Nanoscale Res. Lett. 2017, 12, 137; b) T. Lin, Z. R. Qiu, J.‐R. Yang, L. Ding, Y. h. Gao, Z. C. Feng, Mater. Lett. 2016, 173, 170; c) E. F. Schubert, Light‐Emitting Diodes, Cambridge University Press, Cambridge, UK 2006.
dc.identifier.citedreferencea) M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, J. R. F. Karlicek, J. Appl. Phys. 1999, 86, 1114; b) Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, Appl. Phys. Lett. 2007, 91, 141101.
dc.identifier.citedreferencea) A. Aiello, A. Pandey, A. Bhattacharya, J. Gim, X. Liu, D. A. Laleyan, R. Hovden, Z. Mi, P. Bhattacharya, J. Cryst. Growth 2019, 508, 66; b) A. Aiello, Y. Wu, A. Pandey, P. Wang, W. Lee, D. Bayerl, N. Sanders, Z. Deng, J. Gim, K. Sun, R. Hovden, E. Kioupakis, Z. Mi, P. Bhattacharya, Nano Lett. 2019, 19, 7852; c) M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, J. R. F. Karlicek, Appl. Phys. Lett. 1998, 73, 3550.
dc.identifier.citedreferencea) M. M. R. Evans, J. C. Glueckstein, J. Nogami, Phys. Rev. B 1996, 53, 4000; b) C. Friesen, S. C. Seel, C. V. Thompson, J. Appl. Phys. 2004, 95, 1011; c) V. M. Kaganer, B. Jenichen, R. Shayduk, W. Braun, H. Riechert, Phys. Rev. Lett. 2009, 102, 016103; d) H. Z. Yu, C. V. Thompson, Acta Mater. 2014, 67, 189.
dc.identifier.citedreferencea) Y. Tamura, K. Hane, Nanoscale Res. Lett. 2015, 10, 460; b) A. Zhong, P. Fan, Y. Zhong, D. Zhang, F. Li, J. Luo, Y. Xie, K. Hane, Nanoscale Res. Lett. 2018, 13, 1391; c) A. Zhong, K. Hane, Jpn. J. Appl. Phys. 2013, 52, 08JE13.
dc.identifier.citedreferencea) R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, H. Luth, Nano Lett. 2007, 7, 2248; b) R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. Lüth, Appl. Phys. Lett. 2007, 90, 123117.
dc.identifier.citedreferencea) R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, S. Sakai, Appl. Phys. Lett. 2003, 83, 1157; b) J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, N. A. Sanford, J. Appl. Phys. 2008, 103, 124309; c) V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, Y. Kawakami, J. Appl. Phys. 2010, 107, 114303; d) K. A. Bulashevich, S. Y. Karpov, Phys. Status Solidi RRL 2016, 10, 480; e) M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.‐C. Cheng, A. Scherer, R. Bhat, M. Krames, J. Appl. Phys. 2000, 87, 3497; f) H. Kitagawa, T. Suto, M. Fujita, Y. Tanaka, T. Asano, S. Noda, Appl. Phys. Express 2008, 1, 032004; g) P. Ščajev, K. Jarašiūnas, S. Okur, Ü. Özgür, H. Morkoç, J. Appl. Phys. 2012, 111, 023702.
dc.identifier.citedreferencea) Y. Kawakami, A. Kaneta, L. Su, Y. Zhu, K. Okamoto, M. Funato, A. Kikuchi, K. Kishino, J. Appl. Phys. 2010, 107, 023522; b) L. Zhang, L.‐K. Lee, C.‐H. Teng, T. A. Hill, P.‐C. Ku, H. Deng, Appl. Phys. Lett. 2014, 104, 051116.
dc.identifier.citedreferencea) Y. Zhang, J. Wu, M. Aagesen, H. Liu, J. Phys. D: Appl. Phys. 2015, 48, 463001; b) S. Zhao, H. P. T. Nguyen, M. G. Kibria, Z. Mi, Prog. Quantum. Electron. 2015, 44, 14.
dc.identifier.citedreferencea) M. Biswas, R. Kumar, A. Chatterjee, Y. Wu, Z. Mi, P. Bhattacharya, S. K. Pal, S. Chakrabarti, J. Lumin. 2020, 222, 117123; b) S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki‐Millunchick, Z. Mi, P. Bhattacharya, Nano Lett. 2015, 15, 1647; c) W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Nano Lett. 2010, 10, 3355; d) S. Jahangir, A. Banerjee, P. Bhattacharya, Phys. Status Solidi C 2013, 10, 812; e) C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El‐Desouki, B. S. Ooi, Nano Lett. 2016, 16, 4616.
dc.identifier.citedreferenceF. Glas, Phys. Rev. B 2006, 74, 121302.
dc.identifier.citedreferencea) A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, J. Appl. Phys. 2006, 100, 023522; b) T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 2000, 39, 413; c) S. Sankaranarayanan, S. Chouksey, P. Saha, V. Pendem, A. Udai, T. Aggarwal, S. Ganguly, D. Saha, Sci. Rep. 2018, 8, 8404.
dc.identifier.citedreferencea) S. De, A. Layek, S. Bhattacharya, D. K. Das, A. Kadir, A. Bhattacharya, S. Dhar, A. Chowdhury, Appl. Phys. Lett. 2012, 101, 121919; b) J. W. Robinson, J. H. Rice, K. H. Lee, J. H. Na, R. A. Taylor, D. G. Hasko, R. A. Oliver, M. J. Kappers, C. J. Humphreys, G. A. D. Briggs, Appl. Phys. Lett. 2005, 86, 213103; c) J.‐H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, R. D. Dupuis, IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1080.
dc.identifier.citedreferencea) T. Kohno, Y. Sudo, M. Yamauchi, K. Mitsui, H. Kudo, H. Okagawa, Y. Yamada, Jpn. J. Appl. Phys. 2012, 51, 072102; b) A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, H. Amano, S. J. Pearton, I.‐H. Lee, Q. Sun, J. Han, S. Y. Karpov, Appl. Phys. Lett. 2011, 98,. c) X. Liu, Y. Wu, Y. Malhotra, Y. Sun, Z. Mi, Appl. Phys. Lett. 2020, 117, 011104.
dc.identifier.citedreferencea) Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, J. Phys. D: Appl. Phys. 2010, 43, 1; b) Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, T. Mukai, Phys. Status Solidi A 2007, 204, 2087.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.