Show simple item record

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

dc.contributor.authorPhan, T. D.
dc.contributor.authorVerniero, J. L.
dc.contributor.authorLarson, D.
dc.contributor.authorLavraud, B.
dc.contributor.authorDrake, J. F.
dc.contributor.authorØieroset, M.
dc.contributor.authorEastwood, J. P.
dc.contributor.authorBale, S. D.
dc.contributor.authorLivi, R.
dc.contributor.authorHalekas, J. S.
dc.contributor.authorWhittlesey, P. L.
dc.contributor.authorRahmati, A.
dc.contributor.authorStansby, D.
dc.contributor.authorPulupa, M.
dc.contributor.authorMacDowall, R. J.
dc.contributor.authorSzabo, P. A.
dc.contributor.authorKoval, A.
dc.contributor.authorDesai, M.
dc.contributor.authorFuselier, S. A.
dc.contributor.authorVelli, M.
dc.contributor.authorHesse, M.
dc.contributor.authorPyakurel, P. S.
dc.contributor.authorMaheshwari, K.
dc.contributor.authorKasper, J. C.
dc.contributor.authorStevens, J. M.
dc.contributor.authorCase, A. W.
dc.contributor.authorRaouafi, N. E.
dc.date.accessioned2022-05-06T17:25:24Z
dc.date.available2023-06-06 13:25:22en
dc.date.available2022-05-06T17:25:24Z
dc.date.issued2022-05-16
dc.identifier.citationPhan, T. D.; Verniero, J. L.; Larson, D.; Lavraud, B.; Drake, J. F.; Øieroset, M. ; Eastwood, J. P.; Bale, S. D.; Livi, R.; Halekas, J. S.; Whittlesey, P. L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R. J.; Szabo, P. A.; Koval, A.; Desai, M.; Fuselier, S. A.; Velli, M.; Hesse, M.; Pyakurel, P. S.; Maheshwari, K.; Kasper, J. C.; Stevens, J. M.; Case, A. W.; Raouafi, N. E. (2022). "Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near- Sun Heliospheric Current Sheet." Geophysical Research Letters 49(9): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/172244
dc.description.abstractWe report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 Rs and 20 Rs, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of ∼3, due to the Alfvén speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energized protons were found to have leaked out of the exhaust along separatrix field lines, appearing as field-aligned energetic proton beams in a broad region outside the HCS. Concurrent dropouts of strahl electrons, indicating disconnection from the Sun, provide further evidence for the HCS being the source of the beams. Around the HCS in E07, there were also proton beams but without electron strahl dropouts, indicating that their origin was not the local HCS reconnection exhaust.Plain Language SummaryMagnetic reconnection in current sheets is a universal plasma process that converts magnetic energy into particle energy. The process is important in many laboratory, solar, and astrophysical plasmas. The heliospheric current sheet (HCS), which originates from the Sun and extends throughout the heliosphere, is the largest current sheet in the solar system. One of the surprises of the Parker Solar Probe mission is the finding that magnetic reconnection is almost always active in the near-Sun HCS, despite its enormous scales. In this paper, we report direct evidence showing that reconnection in the HCS close to the Sun can be a source of energetic protons observed in the solar wind. The reason protons can be accelerated to high energies (to tens of kilo-electronvolts) is because the available magnetic energy per particle is high close to the Sun. This finding is important because the source of energetic protons in the heliosphere is unknown.Key PointsLarge available magnetic energy per particle led to significant proton acceleration by reconnection in the near-Sun heliospheric current sheet (HCS) at 16 and 20 RsProton beams and strahl electron dropouts in separatrices are evidence for HCS being a source of energetic protons seen outside the HCSEnergetic protons beams outside the HCS also exist without strahl electron dropouts. Their origin is unlikely to be the local HCS exhaust
dc.publisherNational Aeronautics and Space Administration, Science and Technical Information Division
dc.publisherWiley Periodicals, Inc.
dc.subject.otherparker solar probe
dc.subject.othermagnetic reconnection
dc.subject.otherparticle acceleration
dc.subject.othersolar wind
dc.subject.otherheliospheric current sheet
dc.titleParker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172244/1/grl64096_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172244/2/2021GL096986-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172244/3/grl64096.pdf
dc.identifier.doi10.1029/2021GL096986
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceGosling, J. T., McComas, D., Skoug, R., & Smith, C. ( 2006 ). Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind. Geophysical Research Letters, 33, L17102. https://doi.org/10.1029/2006GL027188
dc.identifier.citedreferenceGosling, J. T., Skoug, R. M., McComas, D. J., & Smith, C. W. ( 2005b ). Magnetic disconnection from the Sun: Observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophysical Research Letters, 32, L05105. https://doi.org/10.1029/2005GL022406
dc.identifier.citedreferenceHaggerty, C. C., Shay, M. A., Drake, J. F., Phan, T. D., & McHugh, C. T. ( 2015 ). The competition of electron and ion heating during magnetic reconnection. Geophysical Research Letters, 42, 9657 – 9665. https://doi.org/10.1002/2015GL065961
dc.identifier.citedreferenceHalekas, J. S., Whittlesey, P., Larson, D. E., McGinnis, D., Maksimovic, M., Berthomier, M., et al. ( 2020 ). Electrons in the young solar wind: First results from the parker solar Probe. The Astrophysical Journal Supplement Series, 246 ( 2 ), 22. https://doi.org/10.3847/1538-4365/ab4cec
dc.identifier.citedreferenceHuttunen, K. E. J., Bale, S. D., & Salem, C. ( 2008 ). Wind observations of low energy particles within a solar wind reconnection region. Annales Geophysicae, 26 ( 6 ), 2701 – 2710. https://doi.org/10.5194/angeo-26-2701-2008
dc.identifier.citedreferenceKasper, J. C., Abiad, R., Austin, G., Balat-Pichelin, M., Bale, S. D., Belcher, J. W., et al. ( 2016 ). Solar wind electrons alphas and protons (SWEAP) investigation: Design of the solar wind and coronal plasma instrument suite for solar Probe plus. Space Science Reviews, 204 ( 1 ), 131 – 186. https://doi.org/10.1007/s11214-015-0206-3
dc.identifier.citedreferenceKhabarova, O., Zank, G., Li, G., Le Roux, J. A., Webb, G. M., Dosch, A., & Malandraki, O. E. ( 2015 ). Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet. Acta Pathologica Japonica, 808 ( 2 ), 181. https://doi.org/10.1088/0004-637X/808/2/181
dc.identifier.citedreferenceBale, S. D., Goetz, K., Harvey, P. R., Turin, P., Bonnell, J. W., Dudok de Wit, T., et al. ( 2016 ). The FIELDS instrument suite for solar Probe plus. Space Science Reviews, 204 ( 1 ), 49 – 82. https://doi.org/10.1007/s11214-016-0244-5
dc.identifier.citedreferenceBiskamp, D. ( 2000 ). Magnetic reconnection in plasmas Cambridge monographs on plasma physics (Vol. 3 ).
dc.identifier.citedreferenceCassak, P. A., & Shay, M. A. ( 2007 ). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14 ( 10 ), 102114. https://doi.org/10.1063/1.2795630
dc.identifier.citedreferenceDesai, M. I., Mitchell, D. G., McComas, D. J., Drake, J. F., Phan, T., Szalay, J. R., et al. ( 2022 ). Suprathermal ion energy spectra and anisotropies near the heliospheric current sheet crossing observed by the parker solar Probe during encounter 7. Acta Pathologica Japonica, 927 ( 1 ), 62. https://doi.org/10.48550/arXiv.2111.00954
dc.identifier.citedreferenceDrake, J. F., Swisdak, M., Phan, T. D., Cassak, P. A., Shay, M. A., Lepri, S. T., et al. ( 2009 ). Ion heating resulting from pickup in magnetic reconnection exhausts. Journal of Geophysical Research, 114, 5111. https://doi.org/10.1029/2008JA013701
dc.identifier.citedreferenceEastwood, J. P., Mistry, R., Phan, T. D., Schwartz, S. J., Ergun, R. E., Drake, J. F., et al. ( 2018 ). Guide field reconnection: Exhaust structure and heating. Geophysical Research Letters, 45, 4569 – 4577. https://doi.org/10.1029/2018GL077670
dc.identifier.citedreferenceEastwood, J. P., Stawarz, J. E., Phan, T. D., Laker, R., Robertson, S., Zhao, L. L., et al. ( 2021 ). Solar Orbiter observations of an ion-scale flux rope confined to a bifurcated solar wind current sheet. Astronomy & Astrophysics, 656, A27. https://doi.org/10.1051/0004-6361/202140949
dc.identifier.citedreferenceEriksson, S., Gosling, J. T., Phan, T. D., Blush, L. M., Simunac, K. D. C., Krauss-Varban, D., et al. ( 2009 ). Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. Journal of Geophysical Research, 114, A07103. https://doi.org/10.1029/2008ja013990
dc.identifier.citedreferenceGosling, J. T., Skoug, R. M., McComas, D. J., & Smith, C. W. ( 2005a ). Direct evidence for magnetic reconnection in the solar wind near 1 AU. Journal of Geophysical Research, 110, A01107. https://doi.org/10.1029/2004JA010809
dc.identifier.citedreferenceSonnerup, B. U. Ö., & Cahill, L. J., Jr. ( 1967 ). Magnetopause structure and attitude from Explorer 12 observations. Journal of Geophysical Research, 72 ( 1 ), 171. https://doi.org/10.1029/jz072i001p00171
dc.identifier.citedreferenceWoodham, L. D., Horbury, T. S., Matteini, L., Woolley, T., Laker, R., Bale, S. D., et al. ( 2021 ). Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere. Astronomy & Astrophysics, 650, L1. https://doi.org/10.1051/0004-6361/202039415
dc.identifier.citedreferenceWhittlesey, P. L., Larson, D. E., Kasper, J. C., Halekas, J., Abatcha, M., Abiad, R., et al. ( 2020 ). The solar Probe ANalyzers—Electrons on the parker solar Probe. The Astrophysical Journal Supplement Series, 246 ( 2 ), 74. https://doi.org/10.3847/1538-4365/ab7370
dc.identifier.citedreferenceVerniero, J. L., Larson, D. E., Livi, R., Rahmati, A., McManus, M. D., Pyakurel, P. S., et al. ( 2020 ). Parker solar Probe observations of proton beams simultaneous with ion-scale waves. The Astrophysical Journal Supplement Series, 248 ( 1 ), 5. https://doi.org/10.3847/1538-4365/ab86af
dc.identifier.citedreferenceSzabo, A., Larson, D. E., Whittlesey, P., Stevens, M. L., Lavraud, B., Phan, T., et al. ( 2020 ). The heliospheric current sheet in the inner heliosphere observed by the parker solar Probe. The Astrophysical Journal Supplement Series, 246 ( 2 ), 47. https://doi.org/10.3847/1538-4365/ab5dac
dc.identifier.citedreferenceFroment, C., Krasnoselskikh, V., Dudok de Wit, T., Agapitov, O., Fargette, N., Lavraud, B., et al. ( 2021 ). Direct evidence for magnetic reconnection at the boundaries. Astronomy & Astrophysics, 650, A5. https://doi.org/10.1051/0004-6361/202039806
dc.identifier.citedreferenceGosling, J. T., Birn, J., & Hesse, M. ( 1995 ). Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophysical Research Letters, 22 ( 8 ), 869 – 872. https://doi.org/10.1029/95gl00270
dc.identifier.citedreferenceStansby, D., Salem, C., Matteini, L., & Horbury, T. ( 2018 ). A new inner heliosphere proton parameter dataset from the Helios mission. Solar Physics, 293 ( 11 ), 155. https://doi.org/10.1007/s11207-018-1377-3
dc.identifier.citedreferenceShepherd, L. S., Cassak, P. A., Drake, J. F., Gosling, J. T., Phan, T. D., & Shay, M. A. ( 2017 ). Structure of exhausts in magnetic reconnection with an X-line of finite extent. Acta Pathologica Japonica, 848 ( 2 ), 90. https://doi.org/10.3847/1538-4357/aa9066
dc.identifier.citedreferenceShay, M. A., Haggerty, C. C., Phan, T. D., Drake, J. F., Cassak, P. A., Wu, P., et al. ( 2014 ). Electron heating during magnetic reconnection: A simulation scaling study. Physics of Plasmas, 21 ( 12 ), 122902. https://doi.org/10.1063/1.4904203
dc.identifier.citedreferenceRuffenach, A., Lavraud, B., Owens, M. J., Sauvaud, J. A., Savani, N. P., Rouillard, A. P., et al. ( 2012 ). Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 117, A09101. https://doi.org/10.1029/2012JA017624
dc.identifier.citedreferenceRéville, V., Velli, M., Rouillard, A. P., Lavraud, B., Tenerani, A., Shi, C., & Strugarek, A. ( 2020 ). Tearing instability and periodic density perturbations in the slow solar wind. The Astrophysical Journal Letters, 895, 1. https://doi.org/10.3847/2041-8213/ab911d
dc.identifier.citedreferencePulupa, M. P., Salem, C., Phan, T. D., Gosling, J. T., & Bale, S. D. ( 2014 ). Core electron heating in solar wind reconnection exhausts. The Astrophysical Journal Letters, 791 ( 1 ), L17. https://doi.org/10.1088/2041-8205/791/1/L17
dc.identifier.citedreferencePhan, T. D., Shay, M. A., Gosling, J. T., Fujimoto, M., Drake, J. F., Paschmann, G., et al. ( 2013 ). Electron bulk heating in magnetic reconnection at Earth’s magnetopause: Dependence on inflow Alfvén speed and magnetic shear. Geophysical Research Letters, 40, 4475 – 4480. https://doi.org/10.1002/grl.50917
dc.identifier.citedreferencePhan, T. D., Paschmann, G., Twitty, C., Mozer, F. S., Gosling, J. T., Eastwood, J. P., et al. ( 2007 ). Evidence for magnetic reconnection initiated in the magnetosheath. Geophysical Research Letters, 34, 14. https://doi.org/10.1029/2007GL030343
dc.identifier.citedreferencePhan, T. D., Lavraud, B., Halekas, J. S., Oieroset, M., Drake, J. F., Eastwood, J. P., et al. ( 2021 ). Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy & Astrophysics, 650, A13. https://doi.org/10.1051/0004-6361/202039863
dc.identifier.citedreferencePhan, T. D., Gosling, J. T., Davis, M. S., Skoug, R. M., Oieroset, M., Lin, R. P., et al. ( 2006 ). A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature, 439 ( 7073 ), 175 – 178. https://doi.org/10.1038/nature04393
dc.identifier.citedreferencePhan, T. D., Drake, J. F., Shay, M. A., Gosling, J. T., Paschmann, G., Eastwood, J. P., et al. ( 2014 ). Ion bulk heating in magnetic reconnection exhausts at Earth’s magnetopause: Dependence on the inflow Alfvén speed and magnetic shear angle. Geophysical Research Letters, 41, 7002 – 7010. https://doi.org/10.1002/2014GL061547
dc.identifier.citedreferencePhan, T. D., Bale, S. D., Eastwood, J. P., Lavraud, B., Drake, J. F., Oieroset, M., et al. ( 2020 ). Parker solar Probe in situ observations of magnetic reconnection exhausts during encounter 1. The Astrophysical Journal Supplement Series, 246 ( 2 ), 34. https://doi.org/10.3847/1538-4365/ab55ee
dc.identifier.citedreferencePetschek, H. E. ( 1964 ). Magnetic field annihilation. In W. N. Hess (Ed.), Proceedings of the AAS-NASA symposium (Vol. 50, pp. 425). National Aeronautics and Space Administration, Science and Technical Information Division.
dc.identifier.citedreferenceOnsager, T. G., Thomsen, M. F., Elphic, R. C., & Gosling, J. T. ( 1991 ). Model of electron and ion distributions in the plasma sheet boundary layer. Journal of Geophysical Research, 96, A12. https://doi.org/10.1029/91ja01983
dc.identifier.citedreferenceMistry, R., Eastwood, J. P., Phan, T. D., & Hietala, H. ( 2015 ). Development of bifurcated current sheets in solar wind reconnection exhausts. Geophysical Research Letters, 42, 10 – 513. https://doi.org/10.1002/2015GL066820
dc.identifier.citedreferenceMcComas, D. J., Alexander, N., Angold, N., Bale, S., Beebe, C., Birdwell, B., et al. ( 2016 ). Integrated science investigation of the Sun (ISIS): Design of the energetic particle investigation. Space Science Reviews, 204 ( 1 ), 187 – 256. https://doi.org/10.1007/s11214-014-0059-1
dc.identifier.citedreferenceLivi, R., Larson, D. E., Kasper, J. C., Abiad, R., Case, A. W., Klein, K. G., et al. ( 2020 ). The solar Probe ANalyzer - Ions on parker solar Probe. The Astrophysical Journal Supplement Series. https://doi.org/10.1002/essoar.10508651.1
dc.identifier.citedreferenceLavraud, B., Kieokaew, R., Fargette, N., Louarn, P., Fedorov, A., Andre, N., et al. ( 2021 ). Magnetic reconnection as a mechanism to produce multiple proton populations and beams locally in the solar wind. Astronomy & Astrophysics, 656, A37. https://doi.org/10.1051/0004-6361/202141149
dc.identifier.citedreferenceLavraud, B., Gosling, J. T., Rouillard, A. P., Fedorov, A., Opitz, A., Sauvaud, J. A., et al. ( 2009 ). Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E. Solar Physics, 256 ( 1 ), 379 – 392. https://doi.org/10.1007/s11207-009-9341-x
dc.identifier.citedreferenceLavraud, B., Fargette, N., Reville, N., Szabo, A., Huang, J., Rouillard, A. P., et al. ( 2020 ). The heliospheric current sheet and plasma shee during parker solar probe’s first orbit. The Astrophysical journal letters, 894 ( 2 ), L19. https://doi.org/10.3847/2041-8213/ab8d2d
dc.identifier.citedreferenceLavraud, B., Dunlop, M. W., Phan, T. D., Reme, H., Bosqued, J. M., Dandouras, I., et al. ( 2002 ). Cluster observations of the exterior cusp and its surrounding boundaries under northward IMF. Geophysical Research Letters, 29, 1 – 4. https://doi.org/10.1029/2002GL015464
dc.identifier.citedreferenceKhabarova, O. V., & Zank, G. P. ( 2017 ). Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au. Acta Pathologica Japonica, 843 ( 1 ), 4. https://doi.org/10.3847/1538-4357/aa7686
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.