Show simple item record

Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates

dc.contributor.authorGhasemi, Mohsen
dc.contributor.authorLarson, Ronald G.
dc.date.accessioned2022-05-06T17:25:40Z
dc.date.available2023-06-06 13:25:37en
dc.date.available2022-05-06T17:25:40Z
dc.date.issued2022-05
dc.identifier.citationGhasemi, Mohsen; Larson, Ronald G. (2022). "Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates." AIChE Journal 68(5): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/172250
dc.description.abstractWe review theories of polyelectrolyte (PE) coacervation, which is the spontaneous association of oppositely charged units of PEs and phase separation into a polymer-dense phase in aqueous solution. The simplest theories can be divided into “physics-based” and “chemistry-based” approaches. In the former, PEs are treated as charged, long-chain, molecules, defined by charge level, chain length, and chain flexibility, but otherwise lacking chemical identity, with electrostatic interactions driving coacervation. The “chemistry-based” approaches focus on the local interactions between the species for which chemical identity is critical, and describe coacervation as the result of competitive local binding interactions of monomers and salts. In this article, we show how these approaches complement each other by presenting recent approaches that take both physical and chemical effects into account. Finally, we suggest future directions toward producing theories that are made quantitatively predictive by accounting for both long range electrostatic and local chemically specific interactions.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherphase equilibrium
dc.subject.othermaterials
dc.subject.otherthermodynamics/classical
dc.titleFuture directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172250/1/aic17646_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172250/2/aic17646.pdf
dc.identifier.doi10.1002/aic.17646
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceWang Q, Schlenoff JB. The polyelectrolyte complex/coacervate continuum. Macromolecules. 2014; 47 ( 9 ): 3108 - 3116. doi: 10.1021/ma500500q
dc.identifier.citedreferenceLund M, Jönsson B. Charge regulation in biomolecular solution. Q Rev Biophys. 2013; 46 ( 3 ): 265 - 281. doi: 10.1017/S003358351300005X
dc.identifier.citedreferenceSetny P, Baron R, Michael Kekenes-Huskey P, McCammon JA, Dzubiella J. Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proc Natl Acad Sci. 2013; 110 ( 4 ): 1197 - 1202. doi: 10.1073/pnas.1221231110
dc.identifier.citedreferenceXu W, Yuan X, Xiang Z, Mimnaugh E, Marcu M, Neckers L. Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol. 2005; 12 ( 2 ): 120 - 126. doi: 10.1038/nsmb885
dc.identifier.citedreferenceOnufriev AV, Alexov E. Protonation and pK changes in protein–ligand binding. Q Rev Biophys. 2013; 46 ( 2 ): 181 - 209. doi: 10.1017/S0033583513000024
dc.identifier.citedreferenceBiok NA, Passow AD, Wang C, Bingman CA, Abbott NL, Gellman SH. Retention of coiled-coil dimer formation in the absence of ion pairing at positions flanking the hydrophobic Core. Biochemistry. 2019; 58 ( 48 ): 4821 - 4826. doi: 10.1021/acs.biochem.9b00668
dc.identifier.citedreferencePace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem. 2009; 284 ( 20 ): 13285 - 13289. doi: 10.1074/jbc.R800080200
dc.identifier.citedreferenceFossat MJ, Pappu RV. Q-canonical Monte Carlo sampling for modeling the linkage between charge regulation and conformational equilibria of peptides. J Phys Chem B. 2019; 123 ( 32 ): 6952 - 6967. doi: 10.1021/acs.jpcb.9b05206
dc.identifier.citedreferenceBoubeta FM, Soler-Illia GJAA, Tagliazucchi M. Electrostatically driven protein adsorption: charge patches versus charge regulation. Langmuir. 2018; 34 ( 51 ): 15727 - 15738. doi: 10.1021/acs.langmuir.8b03411
dc.identifier.citedreferenceLindman S, Bauer MC, Lund M, et al. pK a values for the unfolded state under native conditions explain the pH-dependent stability of PGB1. Biophys J. 2010; 99 ( 10 ): 3365 - 3373. doi: 10.1016/j.bpj.2010.08.078
dc.identifier.citedreferenceBall P. Water as an active constituent in cell biology. Chem Rev. 2008; 108 ( 1 ): 74 - 108. doi: 10.1021/cr068037a
dc.identifier.citedreferenceSidorova NY, Rau DC. Differences in water release for the binding of EcoRI to specific and nonspecific DNA sequences. Proc Natl Acad Sci. 1996; 93 ( 22 ): 12272 - 12277. doi: 10.1073/pnas.93.22.12272
dc.identifier.citedreferenceYeon H, Wang C, Gellman SH, Abbott NL. Influence of immobilized cations on the thermodynamic signature of hydrophobic interactions at chemically heterogeneous surfaces. Mol Syst des Eng. 2020; 5 ( 4 ): 835 - 846. doi: 10.1039/D0ME00016G
dc.identifier.citedreferenceHuang K, Gast S, Ma CD, Abbott NL, Szlufarska I. Comparison between free and immobilized ion effects on hydrophobic interactions: a molecular dynamics study. J Phys Chem B. 2015; 119 ( 41 ): 13152 - 13159. doi: 10.1021/acs.jpcb.5b05220
dc.identifier.citedreferenceLytle TK, Sing CE. Tuning chain interaction entropy in complex Coacervation using polymer stiffness, architecture, and salt Valency. Mol Syst des Eng. 2018; 3 ( 1 ): 183 - 196. doi: 10.1039/C7ME00108H
dc.identifier.citedreferenceRecord MT, Anderson CF, Lohman TM. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978; 11 ( 2 ): 103 - 178. doi: 10.1017/S003358350000202X
dc.identifier.citedreferenceSukhorukov GB, Donath E, Lichtenfeld H, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A Physicochem Eng Asp. 1998; 137 ( 1 ): 253 - 266. doi: 10.1016/S0927-7757(98)00213-1
dc.identifier.citedreferenceChiappisi L, Hoffmann I, Gradzielski M. Complexes of oppositely charged polyelectrolytes and surfactants – recent developments in the field of biologically derived polyelectrolytes. Soft Matter. 2013; 9 ( 15 ): 3896 - 3909. doi: 10.1039/C3SM27698H
dc.identifier.citedreferencede Vries RJ, Cohen Stuart MA. Theory and simulations of macroion complexation. Phys Phys Chem Foods. 2006; 11 ( 5 ): 295 - 301.
dc.identifier.citedreferenceMead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release. 2016; 223: 109 - 117. doi: 10.1016/j.jconrel.2015.12.034
dc.identifier.citedreferenceDautzenberg H, Hartmann J, Grunewald S, Brand F. Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Berichte der Bunsengesellschaft für Phys Chemie. 1996; 100 ( 6 ): 1024 - 1032. doi: 10.1002/bbpc.19961000654
dc.identifier.citedreferenceDecher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997; 277 ( 5330 ): 1232 - 1237.
dc.identifier.citedreferenceFu J, Fares HM, Schlenoff JB. Ion-pairing strength in polyelectrolyte complexes. Macromolecules. 2017; 50: 1066 - 1074. doi: 10.1021/acs.macromol.6b02445
dc.identifier.citedreferenceGhostine RA, Shamoun RF, Schlenoff JB. Doping and diffusion in an extruded saloplastic polyelectrolyte complex. Macromolecules. 2013; 46 ( 10 ): 4089 - 4094.
dc.identifier.citedreferenceLiu Y, Santa Chalarca CF, Carmean RN, et al. Effect of polymer chemistry on the linear viscoelasticity of complex coacervates. Macromolecules. 2020; 53 ( 18 ): 7851 - 7864.
dc.identifier.citedreferenceLi L, Rumyantsev AM, Srivastava S, Meng S, de Pablo JJ, Tirrell MV. Effect of solvent quality on the phase behavior of polyelectrolyte complexes. Macromolecules. 2021; 54 ( 1 ): 105 - 114.
dc.identifier.citedreferenceLin Y-H, Chan HS. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys J. 2017; 112 ( 10 ): 2043 - 2046.
dc.identifier.citedreferenceLin Y-H, Song J, Forman-Kay JD, Chan HS. Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. J Mol Liq. 2017; 228: 176 - 193. doi: 10.1016/j.molliq.2016.09.090
dc.identifier.citedreferenceChang L-W, Lytle TK, Radhakrishna M, et al. Sequence and entropy-based control of complex coacervates. Nat Commun. 2017; 8 ( 1 ): 1273. doi: 10.1038/s41467-017-01249-1
dc.identifier.citedreferenceLytle TK, Chang L-W, Markiewicz N, Perry SL, Sing CE. Designing electrostatic interactions via polyelectrolyte monomer sequence. ACS Cent Sci. 2019; 5 ( 4 ): 709 - 718. doi: 10.1021/acscentsci.9b00087
dc.identifier.citedreferenceMcCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea J-E. Complete phase diagram for liquid−liquid phase separation of intrinsically disordered proteins. J Phys Chem Lett. 2019; 10: 1644 - 1652.
dc.identifier.citedreferenceLin Y, McCarty J, Rauch JN, et al. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. Elife. 2019; 8: e42571. doi: 10.7554/eLife.42571
dc.identifier.citedreferenceMadinya JJ, Chang L-W, Perry SL, Sing CE. Sequence-dependent self-coacervation in high charge-density polyampholytes. Mol Syst des Eng. 2020; 5: 632 - 644.
dc.identifier.citedreferenceBlocher McTigue WC, Voke E, Chang L-W, Perry SL. The benefit of poor mixing: kinetics of coacervation. Phys Chem Chem Phys. 2020; 22 ( 36 ): 20643 - 20657. doi: 10.1039/D0CP03224G
dc.identifier.citedreferenceLiu X, Haddou M, Grillo I, Mana Z, Chapel J-P, Schatz C. Early stage kinetics of polyelectrolyte complex coacervation monitored through stopped-flow light scattering. Soft Matter. 2016; 12 ( 44 ): 9030 - 9038. doi: 10.1039/C6SM01979J
dc.identifier.citedreferenceChollakup R, Smitthipong W, Eisenbach CD, Tirrell M. Phase behavior and coacervation of aqueous poly(acrylic acid)−poly(allylamine) solutions. Macromolecules. 2010; 43 ( 5 ): 2518 - 2528. doi: 10.1021/ma902144k
dc.identifier.citedreferenceDing P, Chen L, Wei C, et al. Efficient synthesis of stable polyelectrolyte complex nanoparticles by electrostatic assembly directed polymerization. Macromol Rapid Commun. 2020; 42 ( 4 ): 2000635. doi: 10.1002/marc.202000635
dc.identifier.citedreferenceLi L, Srivastava S, Meng S, Ting JM, Tirrell MV. Effects of non-electrostatic intermolecular interactions on the phase behavior of pH-sensitive polyelectrolyte complexes. Macromolecules. 2020; 53 ( 18 ): 7835 - 7844. doi: 10.1021/acs.macromol.0c00999
dc.identifier.citedreferenceChen Y, Yang M, Schlenoff JB. Glass transitions in hydrated polyelectrolyte complexes. Macromolecules. 2021; 54 ( 8 ): 3822 - 3831. doi: 10.1021/acs.macromol.0c02682
dc.identifier.citedreferenceAli S, Bleuel M, Prabhu VM. Lower critical solution temperature in polyelectrolyte complex coacervates. ACS Macro Lett. 2019; 8 ( 3 ): 289 - 293. doi: 10.1021/acsmacrolett.8b00952
dc.identifier.citedreferenceAdhikari S, Prabhu VM, Muthukumar M. Lower critical solution temperature behavior in polyelectrolyte complex coacervates. Macromolecules. 2019; 52 ( 18 ): 6998 - 7004. doi: 10.1021/acs.macromol.9b01201
dc.identifier.citedreferenceKremer T, Kovačević D, Salopek J, Požar J. Conditions leading to polyelectrolyte complex overcharging in solution: complexation of poly(acrylate) anion with poly(allylammonium) cation. Macromolecules. 2016; 49 ( 22 ): 8672 - 8685. doi: 10.1021/acs.macromol.6b01892
dc.identifier.citedreferenceAriga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys. 2007; 9 ( 19 ): 2319 - 2340. doi: 10.1039/B700410A
dc.identifier.citedreferenceDubas ST, Schlenoff JB. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules. 1999; 32 ( 24 ): 8153 - 8160. doi: 10.1021/ma981927a
dc.identifier.citedreferenceGuzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the layer-by-layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci. 2020; 282: 102197. doi: 10.1016/j.cis.2020.102197
dc.identifier.citedreferenceKoltover I, Salditt T, Safinya CR. Phase diagram, stability, and overcharging of lamellar cationic lipid–DNA self-assembled complexes. Biophys J. 1999; 77 ( 2 ): 915 - 924.
dc.identifier.citedreferenceSrivastava S, Levi AE, Goldfeld DJ, Tirrell MV. Structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes. Macromolecules. 2020; 53 ( 14 ): 5763 - 5774. doi: 10.1021/acs.macromol.0c00847
dc.identifier.citedreferenceAlkekhia D, Hammond PT, Shukla A. Layer-by-layer biomaterials for drug delivery. Annu Rev Biomed Eng. 2020; 22 ( 1 ): 1 - 24. doi: 10.1146/annurev-bioeng-060418-052350
dc.identifier.citedreferenceCorrea S, Boehnke N, Deiss-Yehiely E, Hammond PT. Solution conditions tune and optimize loading of therapeutic polyelectrolytes into layer-by-layer functionalized liposomes. ACS Nano. 2019; 13 ( 5 ): 5623 - 5634. doi: 10.1021/acsnano.9b00792
dc.identifier.citedreferenceFelgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci. 1987; 84 ( 21 ): 7413 - 7417. doi: 10.1073/pnas.84.21.7413
dc.identifier.citedreferenceAndreeva DV. Chapter 6 - polyelectrolyte multilayers for drug delivery. In: Singh MR, Singh D, Kanwar JR, Chauhan NS, eds. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Academic Press; 2020: 183 - 209. doi: 10.1016/B978-0-12-819666-3.00006-7
dc.identifier.citedreferenceMi X, Blocher McTigue WC, Joshi PU, Bunker MK, Heldt CL, Perry SL. Thermostabilization of viruses via complex coacervation. Biomater Sci. 2020; 8: 7082 - 7092. doi: 10.1039/D0BM01433H
dc.identifier.citedreferenceChandra PN, Mohan MK. Tailor-made polyelectrolyte multilayers for the removal of obidoxime from water in microfiltration process. Membr Membr Technol. 2020; 2 ( 2 ): 132 - 147. doi: 10.1134/S2517751620020031
dc.identifier.citedreferenceValley B, Jing B, Ferreira M, Zhu Y. Rapid and efficient coacervate extraction of cationic industrial dyes from wastewater. ACS Appl Mater Interfaces. 2019; 11 ( 7 ): 7472 - 7478. doi: 10.1021/acsami.8b21674
dc.identifier.citedreferencete Brinke E, Reurink DM, Achterhuis I, de Grooth J, de Vos WM. Asymmetric polyelectrolyte multilayer membranes with ultrathin separation layers for highly efficient micropollutant removal. Appl Mater Today. 2020; 18: 100471. doi: 10.1016/j.apmt.2019.100471
dc.identifier.citedreferenceSadman K, Delgado DE, Won Y, Wang Q, Gray KA, Shull KR. Versatile and high-throughput polyelectrolyte complex membranes via phase inversion. ACS Appl Mater Interfaces. 2019; 11 ( 17 ): 16018 - 16026. doi: 10.1021/acsami.9b02115
dc.identifier.citedreferenceYang L, Tang C, Ahmad M, Yaroshchuk A, Bruening ML. High Selectivities among monovalent cations in dialysis through cation-exchange membranes coated with polyelectrolyte multilayers. ACS Appl Mater Interfaces. 2018; 10 ( 50 ): 44134 - 44143. doi: 10.1021/acsami.8b16434
dc.identifier.citedreferenceBouhallab S, Croguennec T. Spontaneous assembly and induced aggregation of food proteins. In: Müller M, ed. Polyelectrolyte complexes in the dispersed and solid state II: application aspects. Springer; 2013: 67 - 101. doi: 10.1007/12_2012_201
dc.identifier.citedreferenceNakashima KK, Vibhute MA, Spruijt E. Biomolecular chemistry in liquid phase separated compartments. Front Mol Biosci. 2019; 6: 21. doi: 10.3389/fmolb.2019.00021
dc.identifier.citedreferenceLu T, Spruijt E. Multiphase complex coacervate droplets. J Am Chem Soc. 2020; 142 ( 6 ): 2905 - 2914. doi: 10.1021/jacs.9b11468
dc.identifier.citedreferenceBanani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017; 18 ( 5 ): 285 - 298. doi: 10.1038/nrm.2017.7
dc.identifier.citedreferenceChen Y, Yuan M, Zhang Y, et al. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions. Chem Sci. 2020; 11 ( 32 ): 8617 - 8625. doi: 10.1039/D0SC03849K
dc.identifier.citedreferenceGhosh B, Bose R, Tang T-YD. Can coacervation unify disparate hypotheses in the origin of cellular life? Curr Opin Colloid Interface Sci. 2021; 52: 101415. doi: 10.1016/j.cocis.2020.101415
dc.identifier.citedreferencevan Lente JJ, Claessens MMAE, Lindhoud S. Charge-based separation of proteins using polyelectrolyte complexes as models for membraneless organelles. Biomacromolecules. 2019; 20 ( 10 ): 3696 - 3703. doi: 10.1021/acs.biomac.9b00701
dc.identifier.citedreferenceKudlay A, Ermoshkin AV, Olvera de la Cruz M. Complexation of oppositely charged polyelectrolytes: effect of ion pair formation. Macromolecules. 2004; 37 ( 24 ): 9231 - 9241. doi: 10.1021/ma048519t
dc.identifier.citedreferenceCastelnovo M, Joanny J-F. Complexation between oppositely charged polyelectrolytes: beyond the random phase approximation. Eur Phys J E. 2001; 6 ( 1 ): 377 - 386. doi: 10.1007/s10189-001-8051-7
dc.identifier.citedreferenceCastelnovo M, Joanny JF. Phase diagram of diblock polyampholyte solutions. Macromolecules. 2002; 35 ( 11 ): 4531 - 4538. doi: 10.1021/ma012097v
dc.identifier.citedreferenceLee J, Popov YO, Fredrickson GH. Complex coacervation: a field theoretic simulation study of polyelectrolyte complexation. J Chem Phys. 2008; 128 ( 22 ): 224908. doi: 10.1063/1.2936834
dc.identifier.citedreferenceSalehi A, Larson RG. A molecular thermodynamic model of complexation in mixtures of oppositely charged polyelectrolytes with explicit account of charge association/dissociation. Macromolecules. 2016; 49 ( 24 ): 9706 - 9719. doi: 10.1021/acs.macromol.6b01464
dc.identifier.citedreferenceLytle TK, Sing CE. Transfer matrix theory of polymer complex coacervation. Soft Matter. 2017; 13 ( 39 ): 7001 - 7012. doi: 10.1039/C7SM01080J
dc.identifier.citedreferenceRubinstein M, Liao Q, Panyukov S. Structure of liquid coacervates formed by oppositely charged polyelectrolytes. Macromolecules. 2018; 51 ( 23 ): 9572 - 9588. doi: 10.1021/acs.macromol.8b02059
dc.identifier.citedreferenceGhasemi M, Friedowitz S, Larson RG. Overcharging of polyelectrolyte complexes: an entropic phenomenon. Soft Matter. 2020; 16: 10640 - 10656.
dc.identifier.citedreferenceAdhikari S, Leaf MA, Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J Chem Phys. 2018; 149 ( 16 ): 163308. doi: 10.1063/1.5029268
dc.identifier.citedreferenceOu Z, Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys. 2006; 124 ( 15 ): 154902. doi: 10.1063/1.2178803
dc.identifier.citedreferenceRathee VS, Sidky H, Sikora BJ, Whitmer JK. Role of associative charging in the entropy–energy balance of polyelectrolyte complexes. J Am Chem Soc. 2018; 140 ( 45 ): 15319 - 15328. doi: 10.1021/jacs.8b08649
dc.identifier.citedreferenceLi L, Srivastava S, Andreev M, Marciel AB, de Pablo JJ, Tirrell MV. Phase behavior and salt partitioning in polyelectrolyte complex coacervates. Macromolecules. 2018; 51 ( 8 ): 2988 - 2995. doi: 10.1021/acs.macromol.8b00238
dc.identifier.citedreferenceMichaels AS. Polyelectrolyte complexes. Ind Eng Chem. 1965; 57 ( 10 ): 32 - 40. doi: 10.1021/ie50670a007
dc.identifier.citedreferenceGummel J, Cousin F, Boué F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Am Chem Soc. 2007; 129 ( 18 ): 5806 - 5807. doi: 10.1021/ja070414t
dc.identifier.citedreferenceFu J, Schlenoff JB. Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. J Am Chem Soc. 2016; 138 ( 3 ): 980 - 990. doi: 10.1021/jacs.5b11878
dc.identifier.citedreferenceBucur CB, Sui Z, Schlenoff JB. Ideal mixing in polyelectrolyte complexes and multilayers: entropy driven assembly. J Am Chem Soc. 2006; 128 ( 42 ): 13690 - 13691. doi: 10.1021/ja064532c
dc.identifier.citedreferencePark S, Barnes R, Lin Y, et al. Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Commun Chem. 2020; 3 ( 1 ): 83. doi: 10.1038/s42004-020-0328-8
dc.identifier.citedreferenceOverbeek JTG, Voorn MJ. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol. 1957; 49: 7 - 26. doi: 10.1002/jcp.1030490404
dc.identifier.citedreferenceSchlenoff JB. Site-specific perspective on interactions in polyelectrolyte complexes: toward quantitative understanding. J Chem Phys. 2018; 149 ( 16 ): 163314. doi: 10.1063/1.5035567
dc.identifier.citedreferenceShen K, Wang Z-G. Electrostatic correlations and the polyelectrolyte self energy. J Chem Phys. 2017; 146 ( 8 ): 84901. doi: 10.1063/1.4975777
dc.identifier.citedreferencePerry SL, Sing CE. PRISM-based theory of complex coacervation: excluded volume versus chain correlation. Macromolecules. 2015; 48 ( 14 ): 5040 - 5053. doi: 10.1021/acs.macromol.5b01027
dc.identifier.citedreferenceQin J, de Pablo JJ. Criticality and connectivity in macromolecular charge complexation. Macromolecules. 2016; 49 ( 22 ): 8789 - 8800. doi: 10.1021/acs.macromol.6b02113
dc.identifier.citedreferenceBorue VY, Erukhimovich IY. A statistical theory of globular polyelectrolyte complexes. Macromolecules. 1990; 23 ( 15 ): 3625 - 3632. doi: 10.1021/ma00217a015
dc.identifier.citedreferenceBorue VY, Erukhimovich IY. A statistical theory of weakly charged polyelectrolytes: fluctuations, equation of state and microphase separation. Macromolecules. 1988; 21 ( 11 ): 3240 - 3249. doi: 10.1021/ma00189a019
dc.identifier.citedreferenceDelaney KT, Fredrickson GH. Theory of polyelectrolyte complexation—complex Coacervates are self-Coacervates. J Chem Phys. 2017; 146 ( 22 ): 224902. doi: 10.1063/1.4985568
dc.identifier.citedreferenceZhang P, Alsaifi NM, Wu J, Wang Z-G. Polyelectrolyte complex coacervation: effects of concentration asymmetry. J Chem Phys. 2018; 149: 163303. doi: 10.1063/1.5028524
dc.identifier.citedreferenceDobrynin AV, Colby RH, Rubinstein M. Scaling theory of polyelectrolyte solutions. Macromolecules. 1995; 28 ( 6 ): 1859 - 1871. doi: 10.1021/ma00110a021
dc.identifier.citedreferenceDanielsen SPO, Panyukov S, Rubinstein M. Ion pairing and the structure of gel coacervates. Macromolecules. 2020; 53 ( 21 ): 9420 - 9442. doi: 10.1021/acs.macromol.0c01360
dc.identifier.citedreferencede Gennes PG. Scaling Concepts in Polymer Physics. Cornell University Press; 1979 https://books.google.com/books?id=ApzfJ2LYwGUC
dc.identifier.citedreferenceLin Y-H, Forman-Kay JD, Chan HS. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys Rev Lett. 2016; 117 ( 17 ): 178101. doi: 10.1103/PhysRevLett.117.178101
dc.identifier.citedreferenceNott TJ, Petsalaki E, Farber P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015; 57 ( 5 ): 936 - 947. doi: 10.1016/j.molcel.2015.01.013
dc.identifier.citedreferenceAndreev M, de Pablo JJ, Chremos A, Douglas JF. Influence of ion solvation on the properties of electrolyte solutions. J Phys Chem B. 2018; 122 ( 14 ): 4029 - 4034. doi: 10.1021/acs.jpcb.8b00518
dc.identifier.citedreferenceOkur HI, Hladílková J, Rembert KB, et al. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J Phys Chem B. 2017; 121 ( 9 ): 1997 - 2014. doi: 10.1021/acs.jpcb.6b10797
dc.identifier.citedreferenceKiriukhin MY, Collins KD. Dynamic hydration numbers for biologically important ions. Biophys Chem. 2002; 99 ( 2 ): 155 - 168. doi: 10.1016/S0301-4622(02)00153-9
dc.identifier.citedreferenceAuffinger P, Westhof E. Water and ion binding around RNA and DNA (C,G) oligomers. J Mol Biol. 2000; 300 ( 5 ): 1113 - 1131. doi: 10.1006/jmbi.2000.3894
dc.identifier.citedreferenceHofmeister F. Zur Lehre von der Wirkung der Salze. Arch für Exp Pathol und Pharmakologie. 1888; 24 ( 4 ): 247 - 260. doi: 10.1007/BF01918191
dc.identifier.citedreferenceCaminati G, Gabrielli G. Polystyrene sulfonate adsorption at water—graphon and water—air interfaces. Colloids Surfaces A Physicochem Eng Asp. 1993; 70 ( 1 ): 1 - 14. doi: 10.1016/0927-7757(93)80491-V
dc.identifier.citedreferenceMarcus Y. Electrostriction, ion solvation, and solvent release on ion pairing. J Phys Chem B. 2005; 109 ( 39 ): 18541 - 18549. doi: 10.1021/jp051505k
dc.identifier.citedreferenceSinn CG, Dimova R, Antonietti M. Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca 2+: effects determining the quality of polymeric scale inhibitors. Macromolecules. 2004; 37: 3444 - 3450.
dc.identifier.citedreferenceSchlenoff JB, Rmaile AH, Bucur CB. Hydration contributions to association in polyelectrolyte multilayers and complexes: visualizing hydrophobicity. J Am Chem Soc. 2008; 130 ( 41 ): 13589 - 13597. doi: 10.1021/ja802054k
dc.identifier.citedreferenceRekharsky M, Inoue Y, Tobey S, Metzger A, Anslyn E. Ion-pairing molecular recognition in water: aggregation at low concentrations that is entropy-driven. J Am Chem Soc. 2002; 124 ( 50 ): 14959 - 14967. doi: 10.1021/ja020612e
dc.identifier.citedreferenceMahtab R, Harden HH, Murphy CJ. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”−DNA interactions. J Am Chem Soc. 2000; 122 ( 1 ): 14 - 17. doi: 10.1021/ja9907156
dc.identifier.citedreferenceGitlin I, Carbeck JD, Whitesides GM. Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chemie Int Ed. 2006; 45 ( 19 ): 3022 - 3060. doi: 10.1002/anie.200502530
dc.identifier.citedreferenceSinn CG, Dimova R, Huin C, Sel Ö, Antonietti M. Binding of ion pairs onto polymer gels via dehydration entropy: a new mechanism for ion exchange. Macromolecules. 2006; 39 ( 18 ): 6310 - 6312. doi: 10.1021/ma061095d
dc.identifier.citedreferenceYe Z, Sun S, Wu P. Distinct cation–anion interactions in the UCST and LCST behavior of polyelectrolyte complex aqueous solutions. ACS Macro Lett. 2020; 9 ( 7 ): 974 - 979. doi: 10.1021/acsmacrolett.0c00303
dc.identifier.citedreferencePožar J, Kovačević D. Complexation between polyallylammonium cations and polystyrenesulfonate anions: the effect of ionic strength and the electrolyte type. Soft Matter. 2014; 10 ( 34 ): 6530 - 6545. doi: 10.1039/C4SM00651H
dc.identifier.citedreferenceRecord MT, Lohman TM, de Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976; 107 ( 2 ): 145 - 158. doi: 10.1016/S0022-2836(76)80023-X
dc.identifier.citedreferenceVieregg JR, Lueckheide M, Marciel AB, et al. Oligonucleotide–peptide complexes: phase control by hybridization. J Am Chem Soc. 2018; 140 ( 5 ): 1632 - 1638. doi: 10.1021/jacs.7b03567
dc.identifier.citedreferencePerry SL, Li Y, Priftis D, Leon L, Tirrell M. The effect of salt on the complex coacervation of vinyl polyelectrolytes. Polymers. 2014; 6 ( 6 ): 1756 - 1772. doi: 10.3390/polym6061756
dc.identifier.citedreferenceLu T, Nakashima KK, Spruijt E. Temperature-responsive peptide–nucleotide coacervates. J Phys Chem B. 2021; 125 ( 12 ): 3080 - 3091. doi: 10.1021/acs.jpcb.0c10839
dc.identifier.citedreferenceQuiroz FG, Chilkoti A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater. 2015; 14 ( 11 ): 1164 - 1171. doi: 10.1038/nmat4418
dc.identifier.citedreferenceVeis A, Aranyi C. Phase separation in polyelectrolyte systems. I. Complex coacervates of gelatin. J Phys Chem. 1960; 64 ( 9 ): 1203 - 1210.
dc.identifier.citedreferenceSchlenoff JB, Yang M, Digby ZA, Wang Q. Ion content of polyelectrolyte complex coacervates and the donnan equilibrium. Macromolecules. 2019; 52 ( 23 ): 9149 - 9159. doi: 10.1021/acs.macromol.9b01755
dc.identifier.citedreferenceNihonyanagi S, Yamaguchi S, Tahara T. Counterion effect on interfacial water at charged interfaces and its relevance to the hofmeister series. J Am Chem Soc. 2014; 136 ( 17 ): 6155 - 6158. doi: 10.1021/ja412952y
dc.identifier.citedreferenceSuarez-Martinez PC, Batys P, Sammalkorpi M, Lutkenhaus JL. Time–temperature and time–water superposition principles applied to poly(allylamine)/poly(acrylic acid) complexes. Macromolecules. 2019; 52 ( 8 ): 3066 - 3074. doi: 10.1021/acs.macromol.8b02512
dc.identifier.citedreferenceSadman K, Wang Q, Chen Y, Keshavarz B, Jiang Z, Shull KR. Influence of hydrophobicity on polyelectrolyte complexation. Macromolecules. 2017; 50 ( 23 ): 9417 - 9426. doi: 10.1021/acs.macromol.7b02031
dc.identifier.citedreferenceFriedowitz S, Salehi A, Larson RG, Qin J. Role of electrostatic correlations in polyelectrolyte charge association. J Chem Phys. 2018; 149 ( 16 ): 163335. doi: 10.1063/1.5034454
dc.identifier.citedreferenceGhasemi M, Friedowitz S, Larson RG. Analysis of partitioning of salt through doping of polyelectrolyte complex coacervates. Macromolecules. 2020; 53 ( 16 ): 6928 - 6945. doi: 10.1021/acs.macromol.0c00797
dc.identifier.citedreferenceDanielsen SPO, McCarty J, Shea J-E, Delaney KT, Fredrickson GH. Small ion effects on self-Coacervation phenomena in block Polyampholytes. J Chem Phys. 2019; 151 ( 3 ): 34904. doi: 10.1063/1.5109045
dc.identifier.citedreferenceSalomäki M, Tervasmäki P, Areva S, Kankare J. The Hofmeister anion effect and the growth of polyelectrolyte multilayers. Langmuir. 2004; 20 ( 9 ): 3679 - 3683. doi: 10.1021/la036328y
dc.identifier.citedreferenceLarson RG, Liu Y, Li H. Linear viscoelasticity and time-temperature-salt and other superpositions in polyelectrolyte coacervates. J Rheol. 2021; 65 ( 1 ): 77 - 102. doi: 10.1122/8.0000156
dc.identifier.citedreferenceLou J, Friedowitz S, Qin J, Xia Y. Tunable coacervation of well-defined homologous polyanions and polycations by local polarity. ACS Cent Sci. 2019; 5 ( 3 ): 549 - 557. doi: 10.1021/acscentsci.8b00964
dc.identifier.citedreferenceMuthukumar M. 50th anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules. 2017; 50 ( 24 ): 9528 - 9560. doi: 10.1021/acs.macromol.7b01929
dc.identifier.citedreferenceFörster S, Schmidt M. Polyelectrolytes in solution. Physical Properties of Polymers. Springer; 1995: 51 - 133. doi: 10.1007/3-540-58704-7_2
dc.identifier.citedreferenceKatchalsky A. Problems in the physical chemistry of polyelectrolytes. J Polym Sci. 1954; 12 ( 1 ): 159 - 184. doi: 10.1002/pol.1954.120120114
dc.identifier.citedreferenceBatys P, Luukkonen S, Sammalkorpi M. Ability of the Poisson–Boltzmann equation to capture molecular dynamics predicted ion distribution around polyelectrolytes. Phys Chem Chem Phys. 2017; 19 ( 36 ): 24583 - 24593. doi: 10.1039/C7CP02547E
dc.identifier.citedreferenceTian W, Ghasemi M, Larson RG. Extracting free energies of counterion binding to polyelectrolytes by molecular dynamics simulations. J Chem Phys. 2021; 155: 114902.
dc.identifier.citedreferenceManning GS. Limiting Laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys. 1969; 51 ( 3 ): 924 - 933. doi: 10.1063/1.1672157
dc.identifier.citedreferenceHsu H-P, Lee E. Counterion condensation of a polyelectrolyte. Electrochem Commun. 2012; 15 ( 1 ): 59 - 62. doi: 10.1016/j.elecom.2011.11.024
dc.identifier.citedreferenceLuo S, Jiang X, Zou L, et al. Resolving the difference in electric potential within a charged macromolecule. Macromolecules. 2013; 46 ( 8 ): 3132 - 3136. doi: 10.1021/ma302276b
dc.identifier.citedreferenceRumyantsev AM, Jackson NE, Yu B, et al. Controlling complex coacervation via random polyelectrolyte sequences. ACS Macro Lett. 2019; 8 ( 10 ): 1296 - 1302. doi: 10.1021/acsmacrolett.9b00494
dc.identifier.citedreferenceGallegos A, Ong GMC, Wu J. Thermodynamic non-ideality in charge regulation of weak polyelectrolytes. Soft Matter. 2021; 17 ( 40 ): 9221 - 9234. doi: 10.1039/D1SM00848J
dc.identifier.citedreferenceGhasemi M, Larson RG. Role of electrostatic interactions in charge regulation of weakly dissociating polyacids. Prog Polym Sci. 2021; 112: 101322. doi: 10.1016/j.progpolymsci.2020.101322
dc.identifier.citedreferenceZheng B, Avni Y, Andelman D, Podgornik R. Phase separation of polyelectrolytes: the effect of charge regulation. J Phys Chem B. 2021; 125 ( 28 ): 7863 - 7870. doi: 10.1021/acs.jpcb.1c01986
dc.identifier.citedreferenceKnoerdel AR, Blocher McTigue WC, Sing CE. Transfer matrix model of pH effects in polymeric complex Coacervation. J Phys Chem B. 2021; 125 ( 31 ): 8965 - 8980. doi: 10.1021/acs.jpcb.1c03065
dc.identifier.citedreferencePatel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015; 162 ( 5 ): 1066 - 1077. doi: 10.1016/j.cell.2015.07.047
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.