Show simple item record

Program death ligand-1 immunocytochemistry in lung cancer cytological samples: A systematic review

dc.contributor.authorSatturwar, Swati
dc.contributor.authorGirolami, Ilaria
dc.contributor.authorMunari, Enrico
dc.contributor.authorCiompi, Francesco
dc.contributor.authorEccher, Albino
dc.contributor.authorPantanowitz, Liron
dc.date.accessioned2022-05-06T17:26:07Z
dc.date.available2023-07-06 13:26:05en
dc.date.available2022-05-06T17:26:07Z
dc.date.issued2022-06
dc.identifier.citationSatturwar, Swati; Girolami, Ilaria; Munari, Enrico; Ciompi, Francesco; Eccher, Albino; Pantanowitz, Liron (2022). "Program death ligand-1 immunocytochemistry in lung cancer cytological samples: A systematic review." Diagnostic Cytopathology 50(6): 313-323.
dc.identifier.issn8755-1039
dc.identifier.issn1097-0339
dc.identifier.urihttps://hdl.handle.net/2027.42/172260
dc.description.abstractIn this era of personalized medicine, targeted immunotherapies like immune checkpoint inhibitors (ICI) blocking the programmed death-1 (PD-1)/program death ligand-1 (PD-L1) axis have become an integral part of treating advanced stage non-small cell lung carcinoma (NSCLC) and many other cancer types. Multiple monoclonal antibodies are available commercially to detect PD-L1 expression in tumor cells by immunohistochemistry (IHC). As most clinical trials initially required tumor biopsy for PD-L1 detection by IHC, many of the currently available PD-1/PD-L1 assays have been developed and validated on formalin fixed tissue specimens. The majority (>50%) of lung cancer cases do not have a surgical biopsy or resection specimen available for ancillary testing and instead must rely primarily on fine needle aspiration biopsy specimens for diagnosis, staging and ancillary tests. Review of the literature shows multiple studies exploring the feasibility of PD-L1 IHC on cytological samples. In addition, there are studies addressing various aspects of IHC validation on cytology preparations including pre-analytical (e.g., different fixatives), analytical (e.g., antibody clone, staining platforms, inter and intra-observer agreement, cytology-histology concordance) and post-analytical (e.g., clinical outcome) issues. Although promising results in this field have emerged utilizing cytology samples, many important questions still need to be addressed. This review summarizes the literature of PD-L1 IHC in lung cytology specimens and provides practical tips for optimizing analysis.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercancer
dc.subject.otherconcordance
dc.subject.othercytology
dc.subject.otherFNA
dc.subject.otherimmunohistochemistry
dc.subject.otherlung
dc.subject.otherPD1/PDL1
dc.titleProgram death ligand-1 immunocytochemistry in lung cancer cytological samples: A systematic review
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172260/1/dc24955_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172260/2/dc24955.pdf
dc.identifier.doi10.1002/dc.24955
dc.identifier.sourceDiagnostic Cytopathology
dc.identifier.citedreferenceWang H, Liu L, Rabie L, et al. Application of PD-L1 antibody clone sp263 on paired fine needle aspirations, cell blocks and surgical specimens of non-small cell lung cancer. Lab Invest. 2018; 98: PP182.
dc.identifier.citedreferenceSchidhaus HU. Predictive value of PD-L1 diagnostics. Pathologe. 2018; 39 ( 6 ): 498 - 519.
dc.identifier.citedreferenceKovacevic M, Kern I, Gabric S. PD-L1 in NSCLC cytology. Ann Oncol. 2017; 28: iii1 - iii2.
dc.identifier.citedreferenceLantuejoul S, Adam J, Girard N, et al. PD-L1 testing in non-small cell lung carcinona: guidelines from the PATTERN group of thoracic pathologists. Ann Pathol. 2018; 38 ( 2 ): 110 - 125.
dc.identifier.citedreferenceElshiekh M, Iles S, Hopcroft D, et al. Lung cancer and immunotherapy: how good are we in selecting the right patients to treat? An audit on PD-L1 immunohistochemistry scoring sytem on cytology samples. J Pathol. 2019; 248: S7.
dc.identifier.citedreferenceHe X, Reynolds J. Programmed death ligand1(PD-L1) testing on cytology specimens in non-small cell lung carcinoma: in-house versus send-out. J Am Soc Cytopathol. 2020; 9 ( 6 ): S36.
dc.identifier.citedreferenceGilani S, Zomorrodian S, Farooq T, et al. Using double staining immunohistochemistry to accurately evaluate lung tumor PD-L1 expression in cytology specimens. Lab Invest. 2018; 98: 144.
dc.identifier.citedreferenceFitzgibbons PL, Bradley LA, Fatheree LA, et al. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014; 138: 1432.
dc.identifier.citedreferenceSatturwar S, Malenie R, Sutton A, Dai D, Aly FZ. Validation of immunohistochemical tests performed on cytology cell block material: practical application of the College of American Pathologists’ guidelines. Cyto J. 2019; 16 ( 6 ). doi: 10.4103/cytojournal.cytojournal_29_18
dc.identifier.citedreferenceShen X, Li Y. Heterogeneity of PD-L1 expression in non-small cell lung cancer. Mod Pathol. 2020; 33 ( 3 ): 1817 - 1818.
dc.identifier.citedreferenceTsao MS, Kerr KM, Kockx M, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018; 13: 1302 - 1311.
dc.identifier.citedreferenceEllwood T, Cooper W. Comparative study of PD-L1 expression in paired fine-needle aspiration and core biopsy specimens of non-small cell lung cancer. Patholo J. 2019; 51: S76 - S77.
dc.identifier.citedreferenceZhou C, Ionescu D, Hiruki T. PD-L1 testing on the EBUS-FNA cytology specimen has results highly concordant to those of surgical specimen. Lab Invesxt. 2018; 98: 187 - 188.
dc.identifier.citedreferenceBeech C, Rimm DL, Neumeister V, Cai G. Assessment of PD-L1 status by immunohistochemistry in cytological samples of non-small cell lung cancers: correlation with the results of concurrent surgical specimens. Lab Invesr. 2017; 97: 88A.
dc.identifier.citedreferenceChen Y, Shen X, Wang Y, et al. Comparisons of PD-L1 expression between paired cytologic and histologic specimens obtained by endobronchial ultrasound-guided transbronchial needle aspiration in non-small cell lung cancer patients. Mod Pathol. 2020; 33 ( 3 ): 338 - 339.
dc.identifier.citedreferenceDoxtader E, Mukhopadhyay S, Brainard J, et al. Evaluation of PD-L1 expression of non-small cell lung carcinoma on non-formalin-fixed cell blocks with comparison to paired formalin-fixed surgical pathology specimens. Lab Invest. 2019; 98: 139 - 140.
dc.identifier.citedreferenceFrigola G, Vega N, Gonzalez-Carreras A, et al. Validation of PD-L1 PD-L1 performance in cytological samples of non-small cell lung carcinoma obtained from early-stage resection specimens. Mod Pathol. 2020; 33: 344 - 345.
dc.identifier.citedreferenceSantana B, Hernández-Bonilla S, Garcia R, et al. PD-L1 expression in 1051 non-small cell lung cancer samples of a tertiary hospital in 2017–2018 and concordance in paired samples. ECP. 2019; PS-13:006.
dc.identifier.citedreferenceWagner CA, Christie M, Irving L, Steinfort D. Accuracy of PD-L1 tumor staining of cytological and histological samples of lung adenocarcinoma. Eur Respir J. 2018; 52.
dc.identifier.citedreferenceBratton L, Russel D, Yong Q, et al. Comparison of PD-L1 immunostaining for non-small cell carcinoma of the lung between paired cytological and surgical specimens. J Am Soc Cytopathol. 2016; 5 ( 8 ): S48.
dc.identifier.citedreferenceWang H, Agulnik J, Kasymjanova G, et al. PD-L1 expression is related to tumor staging in NSCLC. Lab Invest. 2018; 98: 755.
dc.identifier.citedreferenceInge LJ, Dennis E. Development and applications of computer image analysis algorithms for scoring of PD-L1 immunohistochemistry. Immuno-Oncol Technol. 2020; 6: 2 - 8.
dc.identifier.citedreferenceJackson J, Valentine E, Toy E, et al. PD-L1 expression in histological and cytological specimens and outcomes following immunotherapy in non-small cell lung cancer. J Pathol. 2019; 248: S11.
dc.identifier.citedreferenceKovacevic M, Ivanovic M, Kern I, Cufer T. PD-L1 testing and clinical benefit in patients treated with CPI. J Thorac Oncol. 2019; 14: S781 - S782.
dc.identifier.citedreferenceLozano M, Tobar LG, Abengozar M, et al. Feasibility of PD-L1 expression in cytological stained smears: comparison with cell-blocks and relationship with the outcomes of NSCLC patients treated with check-point inhibitors. Mod Pathol. 2020; 33 ( 3 ): 392.
dc.identifier.citedreferenceStanowska O, Wisniewski P, Knetki-Wroblewska M, et al. PDL1 (22C3) expression in different samples of non-small cell lung cancer (NSCLC) in correlation with response to pembrolizumab treatment a single institute experience. Virchows Arch. 2018; 473: S116.
dc.identifier.citedreferenceTorlakovic E, Albadine R, Bigras G, et al. Canadian multicenter project on standardization of programmed death-ligand 1 immunohistochemistry 22C3 laboratory-developed tests for pembrolizumab therapy in NSCLC. J Thorac Oncol. 2020; 15: 1328 - 1337.
dc.identifier.citedreferenceDodson A, Parry S, Lissenberg-Witte B, et al. External quality assessment demonstrates that PD-L1 22C3 and SP263 assays are systematically different. J Pathol Clin Res. 2020; 6: 138 - 145.
dc.identifier.citedreferenceNicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022; 17: 362 - 387.
dc.identifier.citedreferenceHerbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018; 553: 446 - 454.
dc.identifier.citedreferencePatel SA, Weiss J. Advances in the treatment of non-small cell lung cancer: immunotherapy. Clin Chest Med. 2020; 41: 237 - 247.
dc.identifier.citedreferenceHan Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10: 727 - 742.
dc.identifier.citedreferenceVelcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016; 35: 298 - 308.
dc.identifier.citedreferenceDoroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. 2019; 25: 4592 - 4602.
dc.identifier.citedreferenceBodor JN, Boumber Y, Borghaei H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer. 2020; 126: 260 - 270.
dc.identifier.citedreferenceCallea M, Pedica F, Doglioni C. Programmed death 1 (PD-L1) and it’s ligand as a new frontier in cancer immunotherapy and challenges for the pathologists: state of the art. Pathologica. 2016; 108: 48 - 58.
dc.identifier.citedreferenceYatabe Y, Kerr KM, Utomo A, et al. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey. J Thorac Oncol. 2015; 10: 438 - 445.
dc.identifier.citedreferenceTakigawa N, Ochi N, Yamane H. Histology versus cytology: PD-L1 testing in non-small cell lung cancer. Transl lung. Cancer Res. 2018; 7 ( Suppl 3 ): S225 - S227.
dc.identifier.citedreferenceLantuejoul S, Sound-Tsao M, Cooper WA, et al. PD-L1 testing for lung cancer in 2019: perspective from the IASLC pathology committee. J Thorac Oncol. 2020; 15: 499 - 519.
dc.identifier.citedreferenceGosney JR, Boothman AM, Ratcliffe M, Kerr KM. Cytology for PD-L1 testing: a systematic review. Lung Cancer. 2020; 141: 101 - 106.
dc.identifier.citedreferenceClark DP. Biomarkers for immune checkpoint inhibitors: the importance of tumor topography and the challenges to cytopathology. Cancer Cytopathol. 2018; 126: 11 - 19.
dc.identifier.citedreferenceKim H, Chung JH. PD-L1 testing in non-small cell lung cancer: past, present, and future. J Pathol Transl Med. 2019; 53: 199 - 206.
dc.identifier.citedreferenceWang M, Wang S, Trapani JA, Neeson PJ. Challenges of PD-L1 testing in non-small cell lung cancer and beyond. J Thorac Dis. 2020; 12: 4541 - 4548.
dc.identifier.citedreferenceTejerina E, Garca Tobar L, Echeveste JI, de Andrea CE, Vigliar E, Lozano MD. PD-L1 in cytological samples: a review and a practical approach. Front Med (Lausanne). 2021; 8: 668612.
dc.identifier.citedreferenceAmbrosini-Spaltro A, Dubini A, Pieri F, Ravaglia C, Delmonte A, Poletti V. PD-L1 in NSCLC: role of cell-blocks and concordance between samples. Diagn Cytopathol. 2021; 49: 303 - 310.
dc.identifier.citedreferenceKoomen BM, van der Starre-Gaal J, Vonk JM, et al. Formalin fixation for optimal concordance of programmed death-ligand 1 immunostaining between cytologic and histologic specimens from patients with non-small cell lung cancer. Cancer Cytopathol. 2021; 129: 304 - 317.
dc.identifier.citedreferenceSinclair W, Kobalka P, Ren R, et al. Interobserver agreement in programmed cell death-ligand 1 immunohistochemistry scoring in nonsmall cell lung carcinoma cytologic specimens. Diagn Cytopathol. 2021; 49: 219 - 225.
dc.identifier.citedreferenceCasale S, Bortolotto C, Stella GM, et al. Recent advancement on PD-L1 expression quantification: the radiologist perspective on CT-guided FNAC. Diagn Interv Radiol. 2021; 2: 214 - 218.
dc.identifier.citedreferenceSkov BG. Comparison of PD-L1 expression using 2 validated PD-L1 IHC 22C3 pharmDx methods in non-small cell lung cancer in a routine hospital setting. Appl Immunohistochem Mol Morphol. 2021; 29: 49 - 55.
dc.identifier.citedreferencePerrotta F, Nankivell M, Adizie JB, et al. Endobronchial ultrasound-guided Transbronchial needle aspiration for PD-L1 testing in non-small cell lung cancer. Chest. 2020; 158: 1230 - 1239.
dc.identifier.citedreferenceKuempers C, van der Linde LIS, Reischl M, et al. Comparison of PD-L1 expression between paired cytologic and histologic specimens from non-small cell lung cancer patients. Virchows Arch. 2020; 476: 261 - 271.
dc.identifier.citedreferenceEvans M, O’Sullivan B, Hughes F, et al. The clinicopathological and molecular associations of PD-L1 expression in non-small cell lung cancer: analysis of a series of 10,005 cases tested with the 22C3 assay. Pathol Oncol Res. 2020; 26: 79 - 89.
dc.identifier.citedreferenceJug R, Giovacchini CX, Liu B, et al. EBUS-FNA cytologic-histologic correlation of PD-L1 immunohistochemistry in non-small cell lung cancer. J Am Soc Cytopathol. 2020; 9: 485 - 493.
dc.identifier.citedreferenceHernandez A, Brandler TC, Chen F, et al. Scoring of programmed death-ligand 1 immunohistochemistry on cytology cell block specimens in non-small cell lung carcinoma. Am J Clin Pathol. 2020; 154: 517 - 524.
dc.identifier.citedreferenceVerocq C, Decaestecker C, Rocq L, et al. The daily practice reality of PD-L1 (CD274) evaluation in non-small cell lung cancer: a retrospective study. Oncol Lett. 2020; 19: 3400 - 3410.
dc.identifier.citedreferenceLou SK, Ko HM, Kinoshita T, et al. Implementation of PD-L1 22C3 IHC pharmDxTM in cell block preparations of lung cancer: concordance with surgical resections and technical validation of CytoLyt® Prefixation. Acta Cytol. 2020; 64: 577 - 587.
dc.identifier.citedreferenceBortolotto C, Maglia C, Ciuffreda A, et al. The growth of non-solid neoplastic lung nodules is associated with low PD L1 expression, irrespective of sampling technique. J Transl Med. 2020; 18: 54.
dc.identifier.citedreferenceKravtsov O, Hartley CP, Sheinin Y, et al. Utility of PD-L1 testing on non-small cell lung cancer cytology specimens: an institutional experience with interobserver variability analysis. Ann Diagn Pathol. 2020; 48: 151602.
dc.identifier.citedreferenceWahidi MM, Davidson K, Shofer S, et al. Pilot study of the performance of 19-G needle in endobronchial ultrasound-guided transbronchial aspiration for the diagnosis and testing of molecular markers in lung cancer. J Bronchology Interv Pulmonol. 2021; 28: 209 - 214.
dc.identifier.citedreferenceGosney JR, Haragan A, Chadwick C, et al. Programmed death ligand 1 expression in EBUS aspirates of non-small cell lung cancer: is interpretation affected by type of fixation? Cancer Cytopathol. 2020; 128: 100 - 106.
dc.identifier.citedreferenceSmith A, Wang H, Zerbo A, et al. Programmed death ligand 1 testing of endobronchial ultrasound-guided Transbronchial needle aspiration samples acquired for the diagnosis and staging of non-small cell lung cancer. J Bronchology Interv Pulmonol. 2020; 27: 50 - 57.
dc.identifier.citedreferenceSapalidis K, Zarogoulidis P, Petridis D, et al. EBUS-TNBA 22G samples: comparison of PD-L1 expression between DAKO and BIOCARE®. J Cancer. 2019; 10: 4739 - 4746.
dc.identifier.citedreferenceWang G, Ionescu DN, Lee CH, et al. PD-L1 testing on the EBUS-FNA cytology specimens of non-small cell lung cancer. Lung Cancer. 2019; 136: 1 - 5.
dc.identifier.citedreferenceVigliar E, Malapelle U, Iaccarino A, et al. PD-L1 expression on routine samples of non-small cell lung cancer: results and critical issues from a 1-year experience of a centralised laboratory. J Clin Pathol. 2019; 72: 412 - 417.
dc.identifier.citedreferenceTsunoda A, Morikawa K, Inoue T, et al. A prospective observational study to assess PD-L1 expression in small biopsy samples for non-small-cell lung cancer. BMC Cancer. 2019; 19: 546.
dc.identifier.citedreferenceGagné A, Wang E, Bastien N, et al. Impact of specimen characteristics on PD-L1 testing in non-small cell lung cancer: validation of the IASLC PD-L1 testing recommendations. J Thorac Oncol. 2019; 14: 2062 - 2070.
dc.identifier.citedreferenceLozano MD, Abengozar-Muela M, Echeveste JI, et al. Programmed death-ligand 1 expression on direct pap-stained cytology smears from non-small cell lung cancer: comparison with cell blocks and surgical resection specimens. Cancer Cytopathol. 2019; 127: 470 - 480.
dc.identifier.citedreferenceMei P, Shilo K, Wei L, et al. Programmed cell death ligand 1 expression in cytologic and surgical non-small cell lung carcinoma specimens from a single institution: association with clinicopathologic features and molecular alterations. Cancer Cytopathol. 2019; 127: 447 - 457.
dc.identifier.citedreferenceIlie M, Juco J, Huang L, Hofman V, Khambata-Ford S, Hofman P. Use of the 22C3 anti-programmed death-ligand 1 antibody to determine programmed death-ligand 1 expression in cytology samples obtained from non-small cell lung cancer patients. Cancer Cytopathol. 2018; 126: 264 - 274.
dc.identifier.citedreferenceXu H, Bratton L, Nead M, Russell D, Zhou Z. Comparison of programmed death-ligand 1 (PD-L1) immunostain for nonsmall cell lung carcinoma between paired cytological and surgical specimens. Cytojournal. 2018; 15: 29.
dc.identifier.citedreferenceWang H, Agulnik J, Kasymjanova G, et al. Cytology cell blocks are suitable for immunohistochemical testing for PD-L1 in lung cancer. Ann Oncol. 2018; 29: 1417 - 1422.
dc.identifier.citedreferenceSakata KK, Midthun DE, Mullon JJ, et al. Comparison of programmed death Ligand-1 Immunohistochemical staining between Endobronchial ultrasound Transbronchial needle aspiration and resected lung cancer specimens. Chest. 2018; 154: 827 - 837.
dc.identifier.citedreferenceTorous VF, Rangachari D, Gallant BP, Shea M, Costa DB, VanderLaan PA. PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with non-small cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option? J Am Soc Cytopathol. 2018; 7: 133 - 141.
dc.identifier.citedreferenceNoll B, Wang WL, Gong Y, et al. Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations. Cancer Cytopathol. 2018; 126: 342 - 352.
dc.identifier.citedreferenceArriola AGP, Bashover E, Joseph C, Staerkel G, Wang WL, Roy-Chowdhuri S. The usefulness of various cytologic specimen preparations for PD-L1 immunostaining in non-small cell lung carcinoma. J Am Soc Cytopathol. 2018; 7: 324 - 332.
dc.identifier.citedreferenceBiswas A, Leon ME, Drew P, et al. Clinical performance of endobronchial ultrasound-guided transbronchial needle aspiration for assessing programmed death ligand-1 expression in nonsmall cell lung cancer. Diagn Cytopathol. 2018; 46: 378 - 383.
dc.identifier.citedreferenceCapizzi E, Ricci C, Giunchi F, et al. Validation of the immunohistochemical expression of programmed death ligand 1 (PD-L1) on cytological smears in advanced non small cell lung cancer. Lung Cancer. 2018; 126: 9 - 14.
dc.identifier.citedreferenceHeymann JJ, Bulman WA, Swinarski D, et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol. 2017; 125: 896 - 907.
dc.identifier.citedreferenceChauhan A, Siegel L, Freese R, Racila E, Stewart J 3rd, Amin K. Performance of Ventana SP263 PD-L1 assay in endobronchial ultrasound guided-fine-needle aspiration derived non-small-cell lung carcinoma samples. Diagn Cytopathol. 2021; 49: 355 - 362.
dc.identifier.citedreferenceGagne A, Orain M, Ionescu D, Tsao MS, Joubert D, Joubert P. Comprehensive assessment of PD-L1 immunohistochemistry on paired tissue and cytology specimens from non-small cell lung cancer. Lung Cancer. 2020; 146: 276 - 284.
dc.identifier.citedreferenceBozzetti C, Squadrilli A, Nizzoli R, et al. Optimizing PD-L1 evaluation on cytological samples from advanced non-small-cell lung cancer. Immunotherapy. 2020; 12: 183 - 193.
dc.identifier.citedreferenceRicci C, Capizzi E, Giunchi F, et al. Reliability of programmed death ligand 1 (PD-L1) tumor proportion score (TPS) on cytological smears in advanced non-small cell lung cancer: a prospective validation study. Ther Adv Med Oncol. 2020; 12: 1758835920954802.
dc.identifier.citedreferencePak MG, Roh MS. Cell-blocks are suitable material for programmed cell death ligand-1 immunohistochemistry: comparison of cell-blocks and matched surgical resection specimens in lung cancer. Cytopathology. 2019; 30: 578 - 585.
dc.identifier.citedreferenceDaverio M, Patrucco F, Gavelli F, et al. Comparative analysis of programmed death ligand 1 expression in paired cytologic and histologic specimens of non-small cell lung cancer. Cancer Cytopathol. 2020; 128: 580 - 588.
dc.identifier.citedreferenceHendry S, Byrne DJ, Christie M, et al. Adequate tumour cellularity is essential for accurate PD-L1 immunohistochemistry assessment on cytology cell-block specimens. Cytopathology. 2020; 31: 90 - 95.
dc.identifier.citedreferenceKulaÇ İ, Aydin A, Bulutay P, Firat P. Efficiency of cytology samples for PD-L1 evaluation and comparison with tissue samples. Turk Patoloji Derg. 2020; 36: 205 - 210.
dc.identifier.citedreferenceMunari E, Zamboni G. Sighele expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol. 2019; 127: 52 - 61.
dc.identifier.citedreferenceJain D, Sukumar S, Mohan A, Iyer VK. Programmed death-ligand-1 immunoexpression in matched biopsy and liquid-based cytology samples of advanced stage non-small cell lung carcinomas. Cytopathology. 2018; 29: 550 - 557.
dc.identifier.citedreferenceDong Z, Liu Y, Jiang T, et al. Cell block as a surrogate for programmed death-ligand 1 staining testing in patients of non-small cell lung cancer. J Cancer. 2020; 11: 551 - 558.
dc.identifier.citedreferenceStoy SP, Rosen L, Mueller J, Murgu S. Programmed death-ligand 1 testing of lung cancer cytology specimens obtained with bronchoscopy. Cancer Cytopathol. 2018; 126: 122 - 128.
dc.identifier.citedreferenceYoung S, Griego-Fullbright C, Wagner A, Chargin A, Patterson BK, Chabot-Richards D. Concordance of PD-L1 expression detection in non-small cell lung cancer (NSCLC) tissue biopsy specimens between OncoTect iO lung assay and immunohistochemistry (IHC). Am J Clin Pathol. 2018; 150: 346 - 352.
dc.identifier.citedreferenceSkov BG, Skov T. Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol. 2017; 25: 453 - 459.
dc.identifier.citedreferenceBubendorf L, Conde E, Cappuzzo F, et al. A noninterventional, multinational study to assess PD-L1 expression in cytological and histological lung cancer specimens. Cancer Cytopathol. 2020; 128: 928 - 938.
dc.identifier.citedreferenceSakakibara R, Inamura K, Tambo Y, et al. EBUS-TBNA as a promising method for the evaluation of tumor PD-L1 expression in lung cancer. Clin Lung Cancer. 2017; 18: 527 - 534.
dc.identifier.citedreferenceRussell-Goldman E, Kravets S, Dahlberg SE, Sholl LM, Vivero M. Cytologic-histologic correlation of programmed death-ligand 1 immunohistochemistry in lung carcinomas. Cancer Cytopathol. 2018; 126: 253 - 263.
dc.identifier.citedreferenceStoy S, Rosen L, Murgu S. The use of endobronchial ultrasound-guided transbronchial needle aspiration cytology specimens for programmed death ligand 1 immunohistochemistry testing in non-small cell lung cancer. J Bronchol Interv Pulmonol. 2017; 24: 181 - 183.
dc.identifier.citedreferenceDavidson KR, Cheng GZ, Mahmood K, et al. Prospective pilot study of endobronchial ultrasound trasnbronchial needle aspiration with 19-gauge needle to detect PD-L1 in lung cancer. Am J Respir Crit Care Med. 2019; 199: 9.
dc.identifier.citedreferenceUm SW, Kim HK, Jung SH, et al. Endobronchial ultrasound versus mediastinoscopy for mediastinal nodal staging of non-small-cell lung cancer. J Thorac Oncol. 2015; 10: 331 - 337.
dc.identifier.citedreferenceNavani N, Nankivell M, Lawrence DR, et al. Lung cancer diagnosis and staging with endobronchial ultrasound-guided transbronchial needle aspiration compared with conventional approaches: an open label, pragmatic, randomised controlled trial. Lancet Respir Med. 2015; 3: 282 - 289.
dc.identifier.citedreferenceHameed F, Moore A, Sykes A, Wrightson J. The utility of Endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) in programmed death Ligand-1 (PD-L1) analysis of non-small cell lung cancer Eur. Respir J. 2019; 54.
dc.identifier.citedreferenceLee JM, Kim JS, Heymann JJ, et al. Feasibilty of PD-L1 expression in non-small cell lung cancer from EBUS-TBNA samples. Am J Respir Crit Care Med. 2017; 195.
dc.identifier.citedreferenceMartin-Deleon R, Teixido C, Reyes R, et al. Feasibility of EBUS-TBNA cytologies or an extensive assessment of predictive biomarkers in lung cancer. J Thorac Oncol. 2019; 14 ( 10 ): S927 - S928.
dc.identifier.citedreferenceSomalaraju S, Naqvi S, Sood R, et al. Adequacy of endobronchial ultrasound (EBUS) for PD-L1 expression testing. Am J Respir Crit Care Med. 2019; 199: 9.
dc.identifier.citedreferenceHardy J, Bhatt N, Medford ARL. Suitability of endobronchial ultrasound-guided transbronchial needle aspiration samples for programmed death ligand-1 testing in non-small cell lung cancer, the Bristol experience. Asia Pac J Clin Oncol. Published online April 18, 2021. doi: 10.1111/ajco.13549
dc.identifier.citedreferenceStevenson T, Powari M, Bowles C. Evolution of a rapid onsite evaluation (ROSE) service for endobronchial ultrasound guided (EBUS) fine needle aspiration (FNA) cytology in a UKHospital: a 7-year audit. DiagnCytopathol. 2018; 46: 656 - 662.
dc.identifier.citedreferenceDoxtader E, Yachimiak T, Mukhopadhyay S, et al. Rapid on-site evaluation (ROSE) of endobronchial ultrasound-guided fine-needle aspiration (EBUS-TBNA) optimizes tissue for evaluation of PD-L1 expression on formalin fixed non-small cell lung carcinoma. J Am Soc Cytopathol. 2017; 6 ( 5 ): PPS45.
dc.identifier.citedreferenceEscario MDL, Abengozar M, Labiano T, et al. PD-L1 expression in cytological stained smears using two commercially available assays: comparison with cell blocks and resection specimens. Lab Invest. 2018; 98: PP158.
dc.identifier.citedreferenceAlruwaii F, Idrees M. Programmed death-ligand 1 (PD-L1) expression analysis in cytology specimens using 22C3 clone for targeted therapy-a validation study. J Am Soc Cytopathol. 2017; 6 ( 5 ): S44.
dc.identifier.citedreferenceKovacevic M, Kern I. PD-L1 expression in different samples of non-small cell lung cancer. Virchows Arch. 2017; 471 ( 1 ): S104.
dc.identifier.citedreferenceHart NA T, van der Starre-Gaal J, Vonk JM, Timens W. Essential pre-analytics in PD-L1 immunocytochemistry. Histopathology. 2019; 74: 362 - 364.
dc.identifier.citedreferenceLloyd IE, Zhou W, Witt BL, Chadwick BE. Characterization of PD-L1 Immunohistochemical expression in cell blocks with different specimen fixation and processing methods. Appl Immunohistochem Mol Morphol. 2019; 27: 107 - 113.
dc.identifier.citedreferenceGruchy JR, Barnes PJ, Dakin Haché KA. CytoLyt® fixation and decalcification pretreatments alter antigenicity in normal tissues compared with standard formalin fixation. Appl Immunohistochem Mol Morphol. 2015; 23: 297 - 302.
dc.identifier.citedreferenceZheng X, Bell H, Donovan M, et al. Performance of PD-L1 (22C3 clone) antibody in cytological preparations using different collection media in non-small cell lung carcinoma and comparison with staining in paired histology sections. J Am Soc Cytopathol. 2017; 6 ( 5 ): S81.
dc.identifier.citedreferenceBoothman AM, Scott M, Ratcliffe M, et al. Impact of patient characteristics, prior therapy, and sample type on tumor cell programmed cell death ligand 1 expression in patients with advanced NSCLC screened for the ATLANTIC study. J Thorac Oncol. 2019; 14: 1390 - 1399.
dc.identifier.citedreferenceBoyiddle C, Ruboyianes M, Valle D, et al. Development of IHC staining protocols for assessment of PD-L1 expression in cytological samples. Cancer Res. 2017; V77: 13.
dc.identifier.citedreferenceLabiano T, Almudevar E, Lozano MD, et al. Feasibility of cytological samples for PD-L1 assessment in lung cancer. Cytopathology. 2018; 29: 10 - 11.
dc.identifier.citedreferenceBehtaj M, Rai H, Awadallah A, et al. Programmed death lignad-1 (PDL1) testing in advanced non-small cell lung carcinoma (NSCLC). Comparing adequacy of immunohistochemical results between cytology and surgical specimens. Mod Pathol. 2019; 32: 3.
dc.identifier.citedreferenceTorous V, Rangachari D, Costa D, et al. PD-L1 immunohistochemical testing for lung cancer: cytology and surgical pathology specimens demonstrate similar overall expression patterns. J Am Soc Pathol. 2017; 6 ( 5 ): S43 - S44.
dc.identifier.citedreferenceAgulnik J, Kasymjanova G, Wang H, et al. EBUS-TBNA in assessing PD-L1 expression in NSCLC. Thorac Oncol. 2018; 13 ( 10 ): S387.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.