Show simple item record

A Nonaqueous Redox-Matched Flow Battery with Charge Storage in Insoluble Polymer Beads**

dc.contributor.authorKim, Dukhan
dc.contributor.authorSanford, Melanie S.
dc.contributor.authorVaid, Thomas P.
dc.contributor.authorMcNeil, Anne J.
dc.date.accessioned2022-05-06T17:26:11Z
dc.date.available2023-06-06 13:26:09en
dc.date.available2022-05-06T17:26:11Z
dc.date.issued2022-05-02
dc.identifier.citationKim, Dukhan; Sanford, Melanie S.; Vaid, Thomas P.; McNeil, Anne J. (2022). "A Nonaqueous Redox-Matched Flow Battery with Charge Storage in Insoluble Polymer Beads**." Chemistry – A European Journal 28(25): n/a-n/a.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/172262
dc.description.abstractWe describe the nonaqueous redox-matched flow battery (RMFB), where charge is stored on redox-active moieties covalently tethered to non-circulating, insoluble polymer beads and charge is transferred between the electrodes and the beads via soluble mediators with redox potentials matched to the active moieties on the beads. The RMFB reported herein uses ferrocene and viologen derivatives bound to crosslinked polystyrene beads. Charge storage in the beads leads to a high (approximately 1.0–1.7 M) effective concentration of active material in the reservoirs while preventing crossover of that material. The relatively low concentration of soluble mediators (15 mM) eliminates the need for high-solubility molecules to create high energy density batteries. Nernstian redox exchange between the beads and redox-matched mediators was fast relative to the cycle time of the RMFB. This approach is generalizable to many different redox-active moieties via attachment to the versatile Merrifield resin.A new redox-flow battery architecture, the redox-matched flow battery, wherein charge is stored on redox-active moieties covalently tethered to non-circulating, insoluble polymer beads and charge is transferred between the electrodes and the beads via soluble mediators with redox potentials matched to the active moieties on the beads. This enables high energy densities without crossover of bead-bound active material.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherredox targeting
dc.subject.otherredox chemistry
dc.subject.otherpolymer beads
dc.subject.otherenergy storage
dc.subject.otherelectrochemistry
dc.titleA Nonaqueous Redox-Matched Flow Battery with Charge Storage in Insoluble Polymer Beads**
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172262/1/chem202200149-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172262/2/chem202200149_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172262/3/chem202200149.pdf
dc.identifier.doi10.1002/chem.202200149
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceJ. Ye, L. Xia, C. Wu, M. Ding, C. Jia, Q. Wang, J. Phys. D 2019, 52, 443001.
dc.identifier.citedreferenceS. G. Robinson, Y. Yan, K. H. Hendriks, M. S. Sanford, M. S. Sigman, J. Am. Chem. Soc. 2019, 141, 10171 – 10176.
dc.identifier.citedreferenceJ. Zhang, R. E. Corman, J. K. Schuh, R. H. Ewoldt, I. A. Shkrob, L. Zhang, J. Phys. Chem. C 2018, 122, 8159 – 8172.
dc.identifier.citedreferenceY. K. Zeng, T. S. Zhao, L. An, X. L. Zhou, L. Wei, J. Power Sources 2015, 300, 438 – 443.
dc.identifier.citedreferenceR. A. Potash, J. R. McKone, S. Conte, H. D. Abruña, J. Electrochem. Soc. 2016, 163, A338 – A344.
dc.identifier.citedreferenceW. Duan, R. S. Vemuri, J. D. Milshtein, S. Laramie, R. D. Dmello, J. Huang, L. Zhang, D. Hu, M. Vijayakumar, W. Wang, J. Liu, R. M. Darling, L. Thompson, K. Smith, J. S. Moore, F. R. Brushett, X. Wei, J. Mater. Chem. A 2016, 4, 5448 – 5456.
dc.identifier.citedreferenceJ. Moutet, J. M. Veleta, T. L. Gianetti, ACS Appl. Energ. Mater. 2021, 4, 9 – 14.
dc.identifier.citedreferenceK. H. Hendriks, S. G. Robinson, M. N. Braten, C. S. Sevov, B. A. Helms, M. S. Sigman, S. D. Minteer, M. S. Sanford, ACS Cent. Sci. 2018, 4, 189 – 196.
dc.identifier.citedreferenceA. Shrestha, K. H. Hendriks, M. S. Sigman, S. D. Minteer, M. S. Sanford, Chem. Eur. J. 2020, 26, 5369 – 5373.
dc.identifier.citedreferenceQ. Wang, S. M. Zakeeruddin, D. Wang, I. Exnar, M. Grätzel, Angew. Chem. Int. Ed. 2006, 45, 8197 – 8200; Angew. Chem. 2006, 118, 8377 – 8380.
dc.identifier.citedreferenceQ. Huang, H. Li, M. Grätzel, Q. Wang, Phys. Chem. Chem. Phys. 2013, 15, 1793 – 1797.
dc.identifier.citedreferenceJ. R. Jennings, Q. Huang, Q. Wang, J. Phys. Chem. C 2015, 119, 17522 – 17528.
dc.identifier.citedreferenceE. Zanzola, C. R. Dennison, A. Battistel, P. Peljo, H. Vrubel, V. Amstutz, H. H. Girault, Electrochim. Acta 2017, 235, 664 – 671.
dc.identifier.citedreferenceF. Pan, J. Yang, Q. Huang, X. Wang, H. Huang, Q. Wang, Adv. Energy Mater. 2014, 4, 1400567.
dc.identifier.citedreferenceJ. Yu, M. Salla, H. Zhang, Y. Ji, F. Zhang, M. Zhou, Q. Wang, Energy Storage Mater. 2020, 29, 216 – 222.
dc.identifier.citedreferenceY. G. Zhu, Y. Du, C. Jia, M. Zhou, L. Fan, X. Wang, Q. Wang, J. Am. Chem. Soc. 2017, 139, 6286 – 6289.
dc.identifier.citedreferenceWhile this manuscript was under review, a paper was published in which an insoluble polymer with pendant TEMPO moieties was investigated as an active material for aqueous RFBs, where a structurally similar TEMPO-based molecule was used as the mediator: E. Schröter, C. Stolze, A. Saal, K. Schreyer, M. D. Hager, U. S. Schubert, ACS Appl. Mater. Interfaces 2022, 14, 6638 – 6648.
dc.identifier.citedreferenceC. M. Wong, C. S. Sevov, ACS Energy Lett. 2021, 6, 1271 – 1279.
dc.identifier.citedreferenceA. R. Vaino, K. D. Janda, J. Comb. Chem. 2000, 2, 579 – 596.
dc.identifier.citedreferenceJ. A. Kowalski, A. M. Fenton, B. J. Neyhouse, F. R. Brushett, J. Electrochem. Soc. 2020, 167, 160513.
dc.identifier.citedreferenceZ. Liang, N. H. Attanayake, K. V. Greco, B. J. Neyhouse, J. L. Barton, A. P. Kaur, W. L. Eubanks, F. R. Brushett, J. Landon, S. A. Odom, ACS Appl. Energ. Mater. 2021, 4, 5443 – 5451.
dc.identifier.citedreferenceC. Jia, F. Pan, Y. G. Zhu, Q. Huang, L. Lu, Q. Wang, Sci. Adv. 2015, 1, e1500886.
dc.identifier.citedreferenceM. Zhou, Y. Chen, M. Salla, H. Zhang, X. Wang, S. R. Mothe, Q. Wang, Angew. Chem. Int. Ed. 2020, 59, 14286 – 14291; Angew. Chem. 2020, 132, 14392 – 14397.
dc.identifier.citedreferenceM. Zhou, Q. Huang, T. N. Pham Truong, J. Ghilane, Y. G. Zhu, C. Jia, R. Yan, L. Fan, H. Randriamahazaka, Q. Wang, Chem 2017, 3, 1036 – 1049.
dc.identifier.citedreferenceJ. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776 – 9809; Angew. Chem. 2015, 127, 9912 – 9947.
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2017, 56, 686 – 711; Angew. Chem. 2017, 129, 702 – 729.
dc.identifier.citedreferenceM. Ue, K. Ida, S. Mori, J. Electrochem. Soc. 1994, 141, 2989.
dc.identifier.citedreferenceR. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459 – 3477.
dc.identifier.citedreferenceY. Yan, S. G. Robinson, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 15301 – 15306.
dc.identifier.citedreferenceY. Yan, T. P. Vaid, M. S. Sanford, J. Am. Chem. Soc. 2020, 142, 17564 – 17571.
dc.identifier.citedreferenceB. Silcox, J. Zhang, I. A. Shkrob, L. Thompson, L. Zhang, J. Phys. Chem. C 2019, 123, 16516 – 16524.
dc.identifier.citedreferenceX. Xing, Q. Liu, W. Xu, W. Liang, J. Liu, B. Wang, J. P. Lemmon, ACS Appl. Energ. Mater. 2019, 2, 2364 – 2369.
dc.identifier.citedreferenceW. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. R. Brushett, L. Zhang, X. Wei, ACS Energy Lett. 2017, 2, 1156 – 1161.
dc.identifier.citedreferenceT. P. Vaid, M. S. Sanford, Chem. Commun. 2019, 55, 11037 – 11040.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.