Show simple item record

A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage

dc.contributor.authorPeng, Kang
dc.contributor.authorKoduri, Sravanthi
dc.contributor.authorYe, Fenghui
dc.contributor.authorYang, Jinting
dc.contributor.authorKeep, Richard F.
dc.contributor.authorXi, Guohua
dc.contributor.authorHua, Ya
dc.date.accessioned2022-05-06T17:26:31Z
dc.date.available2023-07-06 13:26:30en
dc.date.available2022-05-06T17:26:31Z
dc.date.issued2022-06
dc.identifier.citationPeng, Kang; Koduri, Sravanthi; Ye, Fenghui; Yang, Jinting; Keep, Richard F.; Xi, Guohua; Hua, Ya (2022). "A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage." CNS Neuroscience & Therapeutics (6): 842-850.
dc.identifier.issn1755-5930
dc.identifier.issn1755-5949
dc.identifier.urihttps://hdl.handle.net/2027.42/172271
dc.description.abstractAimsWhite matter (WM) injury is a critical factor associated with worse outcomes following subarachnoid hemorrhage (SAH). However, the detailed pathological changes are not completely understood. This study investigates temporal changes in the corpus callosum (CC), including WM edema and oligodendrocyte death after SAH, and the role of lipocalin-2 (LCN2) in those changes.MethodsSubarachnoid hemorrhage was induced in adult wild-type or LCN2 knockout mice via endovascular perforation. Magnetic resonance imaging was performed 4 hours, 1 day, and 8 days after SAH, and T2 hyperintensity changes within the CC were quantified to represent WM edema. Immunofluorescence staining was performed to evaluate oligodendrocyte death and proliferation.ResultsSubarachnoid hemorrhage induced significant CC T2 hyperintensity at 4 hours and 1 day that diminished significantly by 8 days post-procedure. Comparing changes between the 4 hours and 1 day, each individual mouse had an increase in CC T2 hyperintensity volume. Oligodendrocyte death was observed at 4 hours, 1 day, and 8 days after SAH induction, and there was progressive loss of mature oligodendrocytes, while immature oligodendrocytes/oligodendrocyte precursor cells (OPCs) proliferated back to baseline by Day 8 after SAH. Moreover, LCN2 knockout attenuated WM edema and oligodendrocyte death at 24 hours after SAH.ConclusionsSubarachnoid hemorrhage leads to T2 hyperintensity change within the CC, which indicates WM edema. Oligodendrocyte death was observed in the CC within 1 day of SAH, with a partial recovery by Day 8. SAH-induced WM injury was alleviated in an LCN2 knockout mouse model.Lipocalin-2 deficiency attenuates corpus callosum T2 hyperintensity and oligodendrocyte death after SAH induction.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherT2 hyperintensity
dc.subject.othercorpus callosum
dc.subject.otherlipocalin-2
dc.subject.otheroligodendrocytes
dc.subject.othersubarachnoid hemorrhage
dc.titleA timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172271/1/cns13812.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172271/2/cns13812_am.pdf
dc.identifier.doi10.1111/cns.13812
dc.identifier.sourceCNS Neuroscience & Therapeutics
dc.identifier.citedreferenceNishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009; 10 ( 1 ): 9 - 22.
dc.identifier.citedreferenceBradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010; 119 ( 1 ): 37 - 53.
dc.identifier.citedreferencePantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996; 27 ( 9 ): 1641 - 1646. discussion 1647.
dc.identifier.citedreferenceMifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther. 2014; 20 ( 7 ): 603 - 612.
dc.identifier.citedreferenceEgashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014; 45 ( 7 ): 2141 - 2143.
dc.identifier.citedreferenceToyota Y, Wei J, Xi G, Keep RF, Hua Y. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: the role of lipocalin-2. CNS Neurosci Ther. 2019; 25 ( 10 ): 1207 - 1214.
dc.identifier.citedreferenceLee S, Jha MK, Suk K. Lipocalin-2 in the inflammatory activation of brain astrocytes. Crit Rev Immunol. 2015; 35 ( 1 ): 77 - 84.
dc.identifier.citedreferenceDevireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005; 123 ( 7 ): 1293 - 1305.
dc.identifier.citedreferencePercie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab. 2020; 40 ( 9 ): 1769 - 1777.
dc.identifier.citedreferencePeng K, Koduri S, Xia F, et al. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS. 2021; 18 ( 1 ): 38.
dc.identifier.citedreferenceYeung MS, Zdunek S, Bergmann O, et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell. 2014; 159 ( 4 ): 766 - 774.
dc.identifier.citedreferenceKuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008; 131 ( Pt 7 ): 1749 - 1758.
dc.identifier.citedreferenceLeithner C, Fuchtemeier M, Jorks D, Mueller S, Dirnagl U, Royl G. Infarct volume prediction by early magnetic resonance imaging in a murine stroke model depends on ischemia duration and time of imaging. Stroke. 2015; 46 ( 11 ): 3249 - 3259.
dc.identifier.citedreferenceTao C, Keep RF, Xi G, Hua Y. CD47 blocking antibody accelerates hematoma clearance after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2020; 11 ( 3 ): 541 - 551.
dc.identifier.citedreferenceHua Y, Nakamura T, Keep RF, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg. 2006; 104 ( 2 ): 305 - 312.
dc.identifier.citedreferenceXi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006; 5 ( 1 ): 53 - 63.
dc.identifier.citedreferenceKaruppagounder SS, Alim I, Khim SJ, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016; 8 ( 328 ): 328ra329.
dc.identifier.citedreferenceQureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009; 373 ( 9675 ): 1632 - 1644.
dc.identifier.citedreferenceAlbert-Weissenberger C, Siren AL, Kleinschnitz C. Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol. 2013; 101–102: 65 - 82.
dc.identifier.citedreferenceFujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013; 4 ( 4 ): 432 - 446.
dc.identifier.citedreferenceClaassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002; 33 ( 5 ): 1225 - 1232.
dc.identifier.citedreferenceKeep RF, Andjelkovic AV, Xiang J, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018; 38 ( 8 ): 1255 - 1275.
dc.identifier.citedreferenceJha MK, Lee S, Park DH, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015; 49: 135 - 156.
dc.identifier.citedreferenceQu XF, Liang TY, Wu DG, et al. Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci Ther. 2021; 27 ( 4 ): 449 - 463.
dc.identifier.citedreferenceShishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G. The effect of gender on acute hydrocephalus after experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2016; 121: 335 - 339.
dc.identifier.citedreferenceXie Q, Xi G, Keep RF, Hua Y. Effects of gender and estrogen receptors on iron-induced brain edema formation. Acta Neurochir Suppl. 2016; 121: 341 - 345.
dc.identifier.citedreferenceChung DY, Oka F, Jin G, et al. Subarachnoid hemorrhage leads to early and persistent functional connectivity and behavioral changes in mice. J Cereb Blood Flow Metab. 2021; 41 ( 5 ): 975 - 985.
dc.identifier.citedreferenceKang M, Yao Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther. 2019; 25 ( 10 ): 1075 - 1084.
dc.identifier.citedreferenceKamiya K, Kuyama H, Symon L. An experimental study of the acute stage of subarachnoid hemorrhage. J Neurosurg. 1983; 59 ( 6 ): 917 - 924.
dc.identifier.citedreferenceLawton MT, Vates GE. Subarachnoid hemorrhage. N Engl J Med. 2017; 377 ( 3 ): 257 - 266.
dc.identifier.citedreferenceYe F, Garton HJL, Hua Y, Keep RF, Xi G. The role of thrombin in brain injury after hemorrhagic and ischemic stroke. Transl Stroke Res. 2021; 12 ( 3 ): 496 - 511.
dc.identifier.citedreferenceMutoh T, Mutoh T, Sasaki K, et al. Neurocardiac protection with milrinone for restoring acute cerebral hypoperfusion and delayed ischemic injury after experimental subarachnoid hemorrhage. Neurosci Lett. 2017; 640: 70 - 75.
dc.identifier.citedreferenceFontana V, Bond O, Spadaro S, et al. Red cell distribution width after subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2018; 30 ( 4 ): 319 - 327.
dc.identifier.citedreferenceFern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia. 2014; 62 ( 11 ): 1780 - 1789.
dc.identifier.citedreferenceReijmer YD, van den Heerik MS, Heinen R, et al. Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage. Stroke. 2018; 49 ( 9 ): 2040 - 2045.
dc.identifier.citedreferenceDarwazeh R, Wei M, Zhong J, et al. Significant injury of the mammillothalamic tract without injury of the corticospinal tract after aneurysmal subarachnoid hemorrhage: a retrospective diffusion tensor imaging study. World Neurosurg. 2018; 114: e624 - e630.
dc.identifier.citedreferenceRost NS, Cougo P, Lorenzano S, et al. Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J Cereb Blood Flow Metab. 2018; 38 ( 1 ): 75 - 86.
dc.identifier.citedreferenceGuo D, Wilkinson DA, Thompson BG, et al. MRI characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res. 2017; 8 ( 3 ): 234 - 243.
dc.identifier.citedreferenceEgashira Y, Zhao H, Hua Y, Keep RF, Xi G. White matter injury after subarachnoid hemorrhage: role of blood-brain barrier disruption and matrix metalloproteinase-9. Stroke. 2015; 46 ( 10 ): 2909 - 2915.
dc.identifier.citedreferenceWang Z, Chen J, Toyota Y, Keep RF, Xi G, Hua Y. Ultra-early cerebral thrombosis formation after experimental subarachnoid hemorrhage detected on T2* magnetic resonance imaging. Stroke. 2021; 52 ( 3 ): 1033 - 1042.
dc.identifier.citedreferenceZhang J, Peng K, Ye F, et al. Acute T2*-weighted magnetic resonance imaging detectable cerebral thrombosis in a rat model of subarachnoid hemorrhage. Transl Stroke Res. 2022; 13 ( 1 ): 188 - 196.
dc.identifier.citedreferenceEgashira Y, Shishido H, Hua Y, Keep RF, Xi G. New grading system based on magnetic resonance imaging in a mouse model of subarachnoid hemorrhage. Stroke. 2015; 46 ( 2 ): 582 - 584.
dc.identifier.citedreferenceShishido H, Egashira Y, Okubo S, et al. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. J Neurosci Methods. 2015; 243: 115 - 119.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.