Show simple item record

Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report

dc.contributor.authorCable, Jennifer
dc.contributor.authorWeber-Ban, Eilika
dc.contributor.authorClausen, Tim
dc.contributor.authorWalters, Kylie J.
dc.contributor.authorSharon, Michal
dc.contributor.authorFinley, Daniel J.
dc.contributor.authorGu, Yangnan
dc.contributor.authorHanna, John
dc.contributor.authorFeng, Yue
dc.contributor.authorMartens, Sascha
dc.contributor.authorSimonsen, Anne
dc.contributor.authorHansen, Malene
dc.contributor.authorZhang, Hong
dc.contributor.authorGoodwin, Jonathan M.
dc.contributor.authorReggio, Alessio
dc.contributor.authorChang, Chunmei
dc.contributor.authorGe, Liang
dc.contributor.authorSchulman, Brenda A.
dc.contributor.authorDeshaies, Raymond J.
dc.contributor.authorDikic, Ivan
dc.contributor.authorHarper, J. Wade
dc.contributor.authorWertz, Ingrid E.
dc.contributor.authorThomä, Nicolas H.
dc.contributor.authorSłabicki, Mikołaj
dc.contributor.authorFrydman, Judith
dc.contributor.authorJakob, Ursula
dc.contributor.authorDavid, Della C.
dc.contributor.authorBennett, Eric J.
dc.contributor.authorBertozzi, Carolyn R.
dc.contributor.authorSardana, Richa
dc.contributor.authorEapen, Vinay V.
dc.contributor.authorCarra, Serena
dc.date.accessioned2022-05-06T17:26:35Z
dc.date.available2023-05-06 13:26:34en
dc.date.available2022-05-06T17:26:35Z
dc.date.issued2022-04
dc.identifier.citationCable, Jennifer; Weber-Ban, Eilika ; Clausen, Tim; Walters, Kylie J.; Sharon, Michal; Finley, Daniel J.; Gu, Yangnan; Hanna, John; Feng, Yue; Martens, Sascha; Simonsen, Anne; Hansen, Malene; Zhang, Hong; Goodwin, Jonathan M.; Reggio, Alessio; Chang, Chunmei; Ge, Liang; Schulman, Brenda A.; Deshaies, Raymond J.; Dikic, Ivan; Harper, J. Wade; Wertz, Ingrid E.; Thomä, Nicolas H. ; Słabicki, Mikołaj ; Frydman, Judith; Jakob, Ursula; David, Della C.; Bennett, Eric J.; Bertozzi, Carolyn R.; Sardana, Richa; Eapen, Vinay V.; Carra, Serena (2022). "Targeted protein degradation: from small molecules to complex organelles- a Keystone Symposia report." Annals of the New York Academy of Sciences 1510(1): 79-99.
dc.identifier.issn0077-8923
dc.identifier.issn1749-6632
dc.identifier.urihttps://hdl.handle.net/2027.42/172273
dc.description.abstractTargeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome–lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium “Targeting protein degradation: from small molecules to complex organelles.” The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.Protein quality control is critical to maintain proper cellular function and development. Accumulation and subsequent aggregation of misfolded proteins is a hallmark of several diseases. Cells have devised several mechanisms to identify misfolded proteins and understanding these protein clearance pathways is key to not only understanding how their dysfunction is involved in disease pathology but also to harnessing these systems for therapeutic applications. On Demand: https://keysym.us/21EK40NYAS
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein degradation
dc.subject.otheraggregation
dc.subject.otherautophagy
dc.subject.otherlysophagy
dc.subject.otherproteasome
dc.subject.otherubiquitin
dc.titleTargeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172273/1/nyas14745.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172273/2/nyas14745_am.pdf
dc.identifier.doi10.1111/nyas.14745
dc.identifier.sourceAnnals of the New York Academy of Sciences
dc.identifier.citedreferenceFhu, C.W. & A. Ali. 2021. Dysregulation of the ubiquitin proteasome system in human malignancies: a window for therapeutic intervention. Cancers 13: 1513.
dc.identifier.citedreferenceChino, H. & N. Mizushima. 2020. ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30: 384 – 398.
dc.identifier.citedreferenceReggio, A., V. Buonomo & P. Grumati. 2020. Eating the unknown: xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp. Cell Res. 396: 112276.
dc.identifier.citedreferenceReggio, A., V. Buonomo, R. Berkane, et al. 2021. Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and collagen quality control. EMBO Rep. 22: e52289.
dc.identifier.citedreferenceGarshott, D.M., E. Sundaramoorthy, M. Leonard, et al. 2020. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 9: e54023.
dc.identifier.citedreferenceJuszkiewicz, S., V. Chandrasekaran, Z. Lin, et al. 2018. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell 72: 469 – 481.e7.
dc.identifier.citedreferenceIkeuchi, K., P. Tesina, Y. Matsuo, et al. 2019. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J. 38: e100276.
dc.identifier.citedreferenceGarshott, D.M., H. An, E. Sundaramoorthy, et al. 2021. iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. Cell Rep. 36: 109642.
dc.identifier.citedreferenceMeyer, C., A. Garzia, P. Morozov, et al. 2020. The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40s subunits of ribosomes stalled in translation from lysosomal degradation. Mol. Cell 77: 1193 – 1205.e5.
dc.identifier.citedreferenceSamant, R.S., C.M. Livingston, E.M. Sontag, et al. 2018. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563: 407 – 411.
dc.identifier.citedreferenceSchreiner, P., X. Chen, K. Husnjak, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin–homology domain interaction. Nature 453: 548 – 552.
dc.identifier.citedreferenceHusnjak, K., S. Elsasser, N. Zhang, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453: 481 – 488.
dc.identifier.citedreferenceAnchoori, R.K., R. Jiang, S. Peng, et al. 2018. Covalent Rpn13-binding inhibitors for the treatment of ovarian cancer. ACS Omega 3: 11917 – 11929.
dc.identifier.citedreferenceAnchoori, R.K., B. Karanam, S. Peng, et al. 2013. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24: 791 – 805.
dc.identifier.citedreferenceRandles, L., R.K. Anchoori, R.B.S. Roden, et al. 2016. The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. J. Biol. Chem. 291: 8773 – 8783.
dc.identifier.citedreferenceTrader, D.J., S. Simanski & T. Kodadek. 2015. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor rpn13 is toxic to multiple myeloma cells. J. Am. Chem. Soc. 137: 6312 – 6319.
dc.identifier.citedreferenceDickson, P., D. Abegg, E. Vinogradova, et al. 2020. Physical and functional analysis of the putative Rpn13 inhibitor RA190. Cell Chem. Biol. 27: 1371 – 1382.e6.
dc.identifier.citedreferenceDickson, P., S. Simanski, J.M. Ngundu, et al. 2020. Mechanistic studies of the multiple myeloma and melanoma cell-selective toxicity of the Rpn13-binding peptoid KDT-11. Cell Chem. Biol. 27: 1383 – 1395.e5.
dc.identifier.citedreferenceSong, Y., A. Ray, S. Li, et al. 2016. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia 30: 1877 – 1886.
dc.identifier.citedreferenceOsei-Amponsa, V., V. Sridharan, M. Tandon, et al. 2020. Impact of losing hRpn13 Pru or UCHL5 on proteasome clearance of ubiquitinated proteins and RA190 cytotoxicity. Mol. Cell. Biol. 40: e00122 – 20.
dc.identifier.citedreferenceLu, X., U. Nowicka, V. Sridharan, et al. 2017. Structure of the Rpn13–Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat. Commun. 8: 15540.
dc.identifier.citedreferenceVanderLinden, R.T., C.W. Hemmis, T. Yao, et al. 2017. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J. Biol. Chem. 292: 9493 – 9504.
dc.identifier.citedreferenceLu, X., V.R. Sabbasani, V. Osei-Amponsa, et al. 2021. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Nat. Commun. 12. 7318. https://doi.org/10.1038/s41467-021-27570-4.
dc.identifier.citedreferenceVassilev, L.T., B.T. Vu, B. Graves, et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844 – 848.
dc.identifier.citedreferenceCummins, J.M., C. Rago, M. Kohli, et al. 2004. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428: 1 p following 486.
dc.identifier.citedreferenceLi, M., C.L. Brooks, N. Kon, et al. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13: 879 – 886.
dc.identifier.citedreferenceZhang, Y., L. Zhou, L. Rouge, et al. 2013. Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Nat. Chem. Biol. 9: 51 – 58.
dc.identifier.citedreferenceIoannou, N., K. Jain & A.G. Ramsay. 2021. Immunomodulatory drugs for the treatment of B cell malignancies. Int. J. Mol. Sci. 22: 8572.
dc.identifier.citedreferencePetzold, G., E.S. Fischer & N.H. Thomä. 2016. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532: 127 – 130.
dc.identifier.citedreferenceSievers, Q.L., G. Petzold, R.D. Bunker, et al. 2018. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362: eaat0572.
dc.identifier.citedreferenceSłabicki, M., Z. Kozicka, G. Petzold, et al. 2020. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585: 293 – 297.
dc.identifier.citedreferenceLv, L., P. Chen, L. Cao, et al. 2020. Discovery of a molecular glue promoting CDK12–DDB1 interaction to trigger cyclin K degradation. eLife 9: e59994.
dc.identifier.citedreferenceMayor-Ruiz, C., S. Bauer, M. Brand, et al. 2020. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16: 1199 – 1207.
dc.identifier.citedreferenceSłabicki, M., H. Yoon, J. Koeppel, et al. 2020. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588: 164 – 168.
dc.identifier.citedreferenceDeshaies, R.J. 2020. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature 580: 329 – 338.
dc.identifier.citedreferenceArvinas Inc. 2020. A phase 1/2, open label, dose escalation, and cohort expansion clinical trial to evaluate the safety, tolerability, and pharmacokinetics of ARV-471 alone and in combination with Palbociclib (IBRANCE®) in patients with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER + /HER2 – ) locally advanced or metastatic breast cancer, who have received prior hormonal therapy and chemotherapy in the locally advanced/metastatic setting. clinicaltrials.gov.
dc.identifier.citedreferenceArvinas Inc. 2021. A phase 1/2, open-label, dose escalation, and cohort expansion clinical trial to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of ARV-110 in patients with metastatic castration resistant prostate cancer. clinicaltrials.gov.
dc.identifier.citedreferenceSchoenfeld, A.J., C. Bandlamudi, J.A. Lavery, et al. 2020. The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer. Clin. Cancer Res. 26: 5701 – 5708.
dc.identifier.citedreferencevan Wijk, S.J.L., F. Fricke, L. Herhaus, et al. 2017. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2: 17066.
dc.identifier.citedreferenceNoad, J., A. von der Malsburg, C. Pathe, et al. 2017. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2: 17063.
dc.identifier.citedreferenceWild, P., H. Farhan, D.G. McEwan, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228 – 233.
dc.identifier.citedreferenceLuo, H. 2016. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr. Opin. Virol. 17: 1 – 10.
dc.identifier.citedreferenceZhang, L., D. Lin, X. Sun, et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368: 409 – 412.
dc.identifier.citedreferenceJin, Z., X. Du, Y. Xu, et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582: 289 – 293.
dc.identifier.citedreferenceDai, W., B. Zhang, X.-M. Jiang, et al. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368: 1331 – 1335.
dc.identifier.citedreferenceShin, D., R. Mukherjee, D. Grewe, et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657 – 662.
dc.identifier.citedreferenceRut, W., Z. Lv, M. Zmudzinski, et al. 2020. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 6: eabd4596.
dc.identifier.citedreferenceFu, Z., B. Huang, J. Tang, et al. 2021. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 12: 488.
dc.identifier.citedreferenceRatia, K., S. Pegan, J. Takayama, et al. 2008. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 105: 16119 – 16124.
dc.identifier.citedreferenceBanik, S.M., K. Pedram, S. Wisnovsky, et al. 2020. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584: 291 – 297.
dc.identifier.citedreferenceBurr, M.L., C.E. Sparbier, Y.-C. Chan, et al. 2017. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549: 101 – 105.
dc.identifier.citedreferenceWang, H., H. Yao, C. Li, et al. 2019. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15: 42 – 50.
dc.identifier.citedreferenceAhn, G., S.M. Banik, C.L. Miller, et al. 2021. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17: 937 – 946.
dc.identifier.citedreferenceChen, B., M. Retzlaff, T. Roos, et al. 2011. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3: a004374.
dc.identifier.citedreferenceLabbadia, J. & R.I. Morimoto. 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84: 435 – 464.
dc.identifier.citedreferenceVinchi, F. 2018. Erythroid differentiation: a matter of proteome remodeling. Hemasphere 2: e26.
dc.identifier.citedreferenceHarper, J.W. & B.A. Schulman. 2021. Cullin-ring ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90: 403 – 429.
dc.identifier.citedreferenceNguyen, H.C., W. Wang & Y. Xiong. 2017. Cullin-RING E3 ubiquitin ligases: bridges to destruction. Subcell. Biochem. 83: 323 – 347.
dc.identifier.citedreferenceSoucy, T.A., P.G. Smith, M.A. Milhollen, et al. 2009. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458: 732 – 736.
dc.identifier.citedreferenceScott, D.C., D.Y. Rhee, D.M. Duda, et al. 2016. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166: 1198 – 1214.e24.
dc.identifier.citedreferenceKelsall, I.R., D.M. Duda, J.L. Olszewski, et al. 2013. TRIAD1 and HHARI bind to and are activated by distinct neddylated cullin–RING ligase complexes. EMBO J. 32: 2848 – 2860.
dc.identifier.citedreferenceDuda, D.M., J.L. Olszewski, J.P. Schuermann, et al. 2013. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21: 1030 – 1041.
dc.identifier.citedreferenceHorn-Ghetko, D., D.T. Krist, J.R. Prabu, et al. 2021. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 590: 671 – 676.
dc.identifier.citedreferenceSchnell, H.M., R.M. Walsh, S. Rawson, et al. 2021. Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nat. Struct. Mol. Biol. 28: 418 – 425.
dc.identifier.citedreferenceRamos, P.C., J. Höckendorff, E.S. Johnson, et al. 1998. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92: 489 – 499.
dc.identifier.citedreferenceDarwin, K.H., S. Ehrt, J.-C. Gutierrez-Ramos, et al. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 1963 – 1966.
dc.identifier.citedreferenceGandotra, S., D. Schnappinger, M. Monteleone, et al. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat. Med. 13: 1515 – 1520.
dc.identifier.citedreferencePearce, M.J., J. Mintseris, J. Ferreyra, et al. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322: 1104 – 1107.
dc.identifier.citedreferenceBurns, K.E., W.-T. Liu, H.I.M. Boshoff, et al. 2009. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284: 3069 – 3075.
dc.identifier.citedreferenceStriebel, F., F. Imkamp, M. Sutter, et al. 2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16: 647 – 651.
dc.identifier.citedreferenceSutter, M., F. Striebel, F.F. Damberger, et al. 2009. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 583: 3151 – 3157.
dc.identifier.citedreferenceWang, T., K.H. Darwin & H. Li. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 17: 1352 – 1357.
dc.identifier.citedreferenceFuhrmann, J., A. Schmidt, S. Spiess, et al. 2009. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324: 1323 – 1327.
dc.identifier.citedreferenceTrentini, D.B., M.J. Suskiewicz, A. Heuck, et al. 2016. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539: 48 – 53.
dc.identifier.citedreferenceSuskiewicz, M.J., B. Hajdusits, R. Beveridge, et al. 2019. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat. Chem. Biol. 15: 510 – 518.
dc.identifier.citedreferenceHajdusits, B., M.J. Suskiewicz, N. Hundt, et al. 2021. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation. eLife 10: e63505.
dc.identifier.citedreferenceMorreale, F.E., S. Kleine, J. Leodolter, et al. 2021. BacPROTACs mediate targeted protein degradation in bacteria. bioRxiv 2021.06.09.447781.
dc.identifier.citedreferenceDekel, E., D. Yaffe, I. Rosenhek-Goldian, et al. 2021. 20S proteasomes secreted by the malaria parasite promote its growth. Nat. Commun. 12: 1172.
dc.identifier.citedreferenceZaffagnini, G. & S. Martens. 2016. Mechanisms of selective autophagy. J. Mol. Biol. 428: 1714 – 1724.
dc.identifier.citedreferenceCiuffa, R., T. Lamark, A.K. Tarafder, et al. 2015. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep. 11: 748 – 758.
dc.identifier.citedreferenceZaffagnini, G., A. Savova, A. Danieli, et al. 2018. P62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37: e98308.
dc.identifier.citedreferenceTurco, E., M. Witt, C. Abert, et al. 2019. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74: 330 – 346.e11.
dc.identifier.citedreferenceTurco, E., A. Savova, F. Gere, et al. 2021. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat. Commun. 12: 5212.
dc.identifier.citedreferenceChang, C., X. Shi, L.E. Jensen, et al. 2021. Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy. Sci. Adv. 7: eabg4922.
dc.identifier.citedreferenceWilkinson, D.S., J.S. Jariwala, E. Anderson, et al. 2015. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol. Cell 57: 55 – 68.
dc.identifier.citedreferenceNieto-Torres, J.L., S.-L. Shanahan, R. Chassefeyre, et al. 2021. LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes. Curr. Biol. 31: 3440 – 3449.e7.
dc.identifier.citedreferenceShrestha, B.K., M. Skytte Rasmussen, Y.P. Abudu, et al. 2020. NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. J. Biol. Chem. 295: 1240 – 1260.
dc.identifier.citedreferencePankiv, S. & T. Johansen. 2010. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy 6: 550 – 552.
dc.identifier.citedreferencePankiv, S., E.A. Alemu, A. Brech, et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188: 253 – 269.
dc.identifier.citedreferenceOlsvik, H.L., T. Lamark, K. Takagi, et al. 2015. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290: 29361 – 29374.
dc.identifier.citedreferenceSakurai, S., T. Tomita, T. Shimizu, et al. 2017. The crystal structure of mouse LC3B in complex with the FYCO1 LIR reveals the importance of the flanking region of the LIR motif. Acta Crystallogr. Sect. F Struct. Biol. Commun. 73: 130 – 137.
dc.identifier.citedreferenceNieto-Torres, J.L., A.M. Leidal, J. Debnath, et al. 2021. Beyond autophagy: the expanding roles of ATG8 proteins. Trends Biochem. Sci. 46: 673 – 686.
dc.identifier.citedreferenceHansen, M., D.C. Rubinsztein & D.W. Walker. 2018. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19: 579 – 593.
dc.identifier.citedreferenceAman, Y., T. Schmauck-Medina, M. Hansen, et al. 2021. Autophagy in healthy aging and disease. Nat. Aging 1: 634 – 650.
dc.identifier.citedreferenceFengsrud, M., C. Raiborg, T.O. Berg, et al. 2000. Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem. J. 352 (Pt 3): 773 – 781.
dc.identifier.citedreferenceThornton, C., A. Jones, S. Nair, et al. 2018. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett. 592: 812 – 830.
dc.identifier.citedreferenceMunson, M.J., B.J. Mathai, M.Y.W. Ng, et al. 2021. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat. Commun. 12: 6101.
dc.identifier.citedreferenceScrivo, A., M. Bourdenx, O. Pampliega, et al. 2018. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17: 802 – 815.
dc.identifier.citedreferenceGoodwin, J.M., W.G. Walkup, K. Hooper, et al. 2021. GABARAP membrane conjugation sequesters the FLCN–FNIP tumor suppressor complex to activate TFEB and lysosomal biogenesis. Sci. Adv. 7: abj2485.
dc.identifier.citedreferenceSardana, R., L. Zhu & S.D. Emr. 2019. Rsp5 ubiquitin ligase-mediated quality control system clears membrane proteins mistargeted to the vacuole membrane. J. Cell Biol. 218: 234 – 250.
dc.identifier.citedreferenceNguyen, A.T., M.A. Prado, P.J. Schmidt, et al. 2017. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357: eaan0218.
dc.identifier.citedreferenceTian, Y., Z. Li, W. Hu, et al. 2010. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141: 1042 – 1055.
dc.identifier.citedreferenceZhang, Y., L. Yan, Z. Zhou, et al. 2009. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136: 308 – 321.
dc.identifier.citedreferenceLi, S., P. Yang, E. Tian, et al. 2013. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol. Cell 52: 421 – 433.
dc.identifier.citedreferencePutnam, A., M. Cassani, J. Smith, et al. 2019. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26: 220 – 226.
dc.identifier.citedreferenceZhang, G., Z. Wang, Z. Du, et al. 2018. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174: 1492 – 1506.e22.
dc.identifier.citedreferenceNoda, N.N., Z. Wang & H. Zhang. 2020. Liquid–liquid phase separation in autophagy. J. Cell Biol. 219: e202004062.
dc.identifier.citedreferenceGanassi, M., D. Mateju, I. Bigi, et al. 2016. A surveillance function of the HSPB8–BAG3–HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 63: 796 – 810.
dc.identifier.citedreferenceChitiprolu, M., C. Jagow, V. Tremblay, et al. 2018. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9: 2794.
dc.identifier.citedreferenceTurakhiya, A., S.R. Meyer, G. Marincola, et al. 2018. ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol. Cell 70: 906 – 919.e7.
dc.identifier.citedreferenceZhang, P., B. Fan, P. Yang, et al. 2019. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8: e39578.
dc.identifier.citedreferenceMediani, L., F. Antoniani, V. Galli, et al. 2021. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Rep. 22: e51740.
dc.identifier.citedreferenceWippich, F., B. Bodenmiller, M.G. Trajkovska, et al. 2013. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152: 791 – 805.
dc.identifier.citedreferenceDavid, D.C. 2012. Aging and the aggregating proteome. Front. Genet. 3: 247.
dc.identifier.citedreferenceDavid, D.C., N. Ollikainen, J.C. Trinidad, et al. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8: e1000450.
dc.identifier.citedreferenceGroh, N., I. Gallotta, M.C. Lechler, et al. 2017. Methods to study changes in inherent protein aggregation with age in Caenorhabditis elegans. J. Vis. Exp.
dc.identifier.citedreferenceHuang, C., S. Wagner-Valladolid, A.D. Stephens, et al. 2019. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. eLife 8: e43059.
dc.identifier.citedreferenceJung, R., M.C. Lechler, C. Rödelsperger, et al. 2020. Tissue-specific safety mechanism results in opposite protein aggregation patterns during aging. bioRxiv. 2020.12.04.409771.
dc.identifier.citedreferenceBakowski, M.A., C.A. Desjardins, M.G. Smelkinson, et al. 2014. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog. 10: e1004200.
dc.identifier.citedreferenceGallotta, I., A. Sandhu, M. Peters, et al. 2020. Extracellular proteostasis prevents aggregation during pathogenic attack. Nature 584: 410 – 414.
dc.identifier.citedreferenceSebastiani, P., A. Gurinovich, H. Bae, et al. 2017. Four genome-wide association studies identify new extreme longevity variants. J. Gerontol. A Biol. Sci. Med. Sci. 72: 1453 – 1464.
dc.identifier.citedreferenceSebastiani, P., N. Solovieff, A.T. Dewan, et al. 2012. Genetic signatures of exceptional longevity in humans. PLoS One 7: e29848.
dc.identifier.citedreferenceMartin, G.M., A. Bergman & N. Barzilai. 2007. Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet. 3: e125.
dc.identifier.citedreferenceBelousov, V.V., A.F. Fradkov, K.A. Lukyanov, et al. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3: 281 – 286.
dc.identifier.citedreferenceGutscher, M., A.-L. Pauleau, L. Marty, et al. 2008. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5: 553 – 559.
dc.identifier.citedreferenceBazopoulou, D., D. Knoefler, Y. Zheng, et al. 2019. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576: 301 – 305.
dc.identifier.citedreferenceGreer, E.L., T.J. Maures, A.G. Hauswirth, et al. 2010. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466: 383 – 387.
dc.identifier.citedreferenceGreer, E.L., T.J. Maures, D. Ucar, et al. 2011. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479: 365 – 371.
dc.identifier.citedreferenceBurla, R., M. La Torre, K. Maccaroni, et al. 2020. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 11: 205 – 218.
dc.identifier.citedreferenceHuang, A., Y. Tang, X. Shi, et al. 2020. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat. Commun. 11: 3284.
dc.identifier.citedreferenceBays, N.W. & R.Y. Hampton. 2002. Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr. Biol. 12: R366 – R371.
dc.identifier.citedreferenceNouri, K., Y. Feng & A.D. Schimmer. 2020. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis. 11: 841.
dc.identifier.citedreferencePapadopoulos, C., B. Kravic & H. Meyer. 2020. Repair or lysophagy: dealing with damaged lysosomes. J. Mol. Biol. 432: 231 – 239.
dc.identifier.citedreferenceGutierrez, M.G. & J.G. Carlton. 2018. ESCRTs offer repair service. Science 360: 33 – 34.
dc.identifier.citedreferenceEapen, V.V., S. Swarup, M.J. Hoyer, et al. 2021. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 10: e72328.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.