Show simple item record

Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests

dc.contributor.authorTeets, Aaron
dc.contributor.authorMoore, David J. P.
dc.contributor.authorAlexander, M. Ross
dc.contributor.authorBlanken, Peter D.
dc.contributor.authorBohrer, Gil
dc.contributor.authorBurns, Sean P.
dc.contributor.authorCarbone, Mariah S.
dc.contributor.authorDucey, Mark J.
dc.contributor.authorFraver, Shawn
dc.contributor.authorGough, Christopher M.
dc.contributor.authorHollinger, David Y.
dc.contributor.authorKoch, George
dc.contributor.authorKolb, Thomas
dc.contributor.authorMunger, J. William
dc.contributor.authorNovick, Kimberly A.
dc.contributor.authorOllinger, Scott V.
dc.contributor.authorOuimette, Andrew P.
dc.contributor.authorPederson, Neil
dc.contributor.authorRicciuto, Daniel M.
dc.contributor.authorSeyednasrollah, Bijan
dc.contributor.authorVogel, Christoph S.
dc.contributor.authorRichardson, Andrew D.
dc.date.accessioned2022-05-06T17:26:38Z
dc.date.available2023-05-06 13:26:36en
dc.date.available2022-05-06T17:26:38Z
dc.date.issued2022-04
dc.identifier.citationTeets, Aaron; Moore, David J. P.; Alexander, M. Ross; Blanken, Peter D.; Bohrer, Gil; Burns, Sean P.; Carbone, Mariah S.; Ducey, Mark J.; Fraver, Shawn; Gough, Christopher M.; Hollinger, David Y.; Koch, George; Kolb, Thomas; Munger, J. William; Novick, Kimberly A.; Ollinger, Scott V.; Ouimette, Andrew P.; Pederson, Neil; Ricciuto, Daniel M.; Seyednasrollah, Bijan; Vogel, Christoph S.; Richardson, Andrew D. (2022). "Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests." Journal of Geophysical Research: Biogeosciences 127(4): n/a-n/a.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/172274
dc.description.abstractLinking biometric measurements of stand-level biomass growth to tower-based measurements of carbon uptake—gross primary productivity and net ecosystem productivity—has been the focus of numerous ecosystem-level studies aimed to better understand the factors regulating carbon allocation to slow-turnover wood biomass pools. However, few of these studies have investigated the importance of previous year uptake to growth. We tested the relationship between wood biomass increment (WBI) and different temporal periods of carbon uptake from the current and previous years to investigate the potential lagged allocation of fixed carbon to growth among six mature, temperate forests. We found WBI was strongly correlated to carbon uptake across space (i.e., long-term averages at the different sites) but on annual timescales, WBI was much less related to carbon uptake, suggesting a temporal mismatch between C fixation and allocation to biomass. We detected lags in allocation of the previous year’s carbon uptake to WBI at three of the six sites. Sites with higher annual WBI had overall stronger correlations to carbon uptake, with the strongest correlations to carbon uptake from the previous year. Only one site had WBI with strong positive relationships to current year uptake and not the previous year. Forests with low rates of WBI demonstrated weak correlations to carbon uptake from the previous year and stronger relationships to current year climate conditions. Our work shows an important, but not universal, role of lagged allocation of the previous year’s carbon uptake to growth in temperate forests.Plain Language SummaryWe compared the interannual variability of stand-level biomass growth (estimated from annual tree-level measurements) to carbon uptake (measured from towers monitoring gas exchange over forest canopies) to identify temporal mismatches between the two processes. We used data from multiple forested sites with long-term measurements of carbon uptake to ask the question: is there a consistent temporal offset between the uptake of carbon and the allocation to plant biomass? We found that the relationship between growth and carbon uptake varies among sites, and there was no consistent temporal offset between the uptake of carbon and allocation to biomass growth. Sites with higher growth rates had higher interannual variability, and more apparent coupling between biomass growth and carbon uptake from the previous year. Forests with lower growth rates had weaker relationships with carbon uptake and stronger coupling with current year environmental conditions. We demonstrate that temporal lags between carbon uptake and allocation to growth are not universal among these temperate forests, and the carry-over of uptake stored from the previous year is not as critical in slow-growing forests, compared to fast-growing forests, likely due to lower demands for growth. This work helps to clarify the limitations on the growth of slow-turnover wood biomass.Key PointsWe found evidence for lags in allocation of previous year’s carbon uptake to wood biomass increment (WBI) at three of six sites studiedSites with high annual WBI demonstrated strong correlations to carbon uptake, with the strongest correlations including previous year uptakeWBI was less tightly coupled to carbon uptake in less productive forests that also exhibited low interannual variability in WBI
dc.publisherUniversity of Arizona
dc.publisherWiley Periodicals, Inc.
dc.subject.otherforest carbon
dc.subject.otherAmeriFlux
dc.subject.otherwood biomass increment
dc.subject.othereddy covariance
dc.subject.othertree physiology
dc.subject.othercarbon allocation
dc.titleCoupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172274/1/jgrg22194.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172274/2/jgrg22194_am.pdf
dc.identifier.doi10.1029/2021JG006690
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceOgle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J. M., Huxman, T. E., et al. ( 2015 ). Quantifying ecological memory in plant and ecosystem processes. Ecology Letters, 18 ( 3 ), 221 – 235. https://doi.org/10.1111/ele.12399
dc.identifier.citedreferenceMonson, R. K., Sparks, J. P., Rosenstiel, T. N., Scott-Denton, L. E., Huxman, T. E., Harley, P. C., et al. ( 2005 ). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146 ( 1 ), 130 – 147. https://doi.org/10.1007/s00442-005-0169-2
dc.identifier.citedreferenceMuller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. ( 2011 ). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62 ( 6 ), 1715 – 1729. https://doi.org/10.1093/jxb/erq438
dc.identifier.citedreferenceMund, M., Herbst, M., Knohl, A., Matthäus, B., Schumacher, J., Schall, P., et al. ( 2020 ). It is not just a ‘trade-off’: Indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. New Phytologist, 226 ( 1 ), 111 – 125. https://doi.org/10.1111/nph.16408
dc.identifier.citedreferenceMund, M., Kutsch, W. L., Wirth, C., Kahl, T., Knohl, A., Skomarkova, M. V., & Schulze, E.-D. ( 1991- ). The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiology, 30 ( 6 ), 689 – 704. https://doi.org/10.1093/treephys/tpq027
dc.identifier.citedreferenceMunger, J. W. ( 1991- ). AmeriFlux US-Ha1 Harvard Forest EMS tower (HFR1). Dataset. https://doi.org/10.17190/AMF/1246059
dc.identifier.citedreferenceNovick, K., & Phillips, R. ( 1999- ). AmeriFlux US-MMS Morgan Monroe State Forest. Dataset. https://doi.org/10.17190/AMF/1246080
dc.identifier.citedreferenceOhtsuka, T., Saigusa, N., & Koizumi, H. ( 2009 ). On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Global Change Biology, 15 ( 4 ), 1015 – 1024. https://doi.org/10.1111/j.1365-2486.2008.01800.x
dc.identifier.citedreferenceOuimette, A. P., Ollinger, S. V., Richardson, A. D., Hollinger, D. Y., Keenan, T. F., Lepine, L. C., & Vadeboncoeur, M. A. ( 2018 ). Carbon fluxes and interannual drivers in a temperate forest ecosystem assessed through comparison of top-down and bottom-up approaches. Agricultural and Forest Meteorology, 256–257, 420 – 430. https://doi.org/10.1016/j.agrformet.2018.03.017
dc.identifier.citedreferencePan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., et al. ( 2011 ). A large and persistent carbon sink in the world’s forests. Science, 333, 988 – 994. http://www.sciencemag.org/content/333/6045/988.short
dc.identifier.citedreferencePiper, F. I., & Paula, S. ( 2020 ). The role of nonstructural carbohydrates storage in forest resilience under climate change. Current Forestry Reports, 6 ( 1 ), 1 – 13. https://doi.org/10.1007/s40725-019-00109-z
dc.identifier.citedreferencePompa-García, M., Camarero, J. J., Colangelo, M., & Gallardo-Salazar, J. L. ( 2021 ). Xylogenesis is uncoupled from forest productivity. Trees - Structure and Function, 35 ( 4 ), 1123 – 1134. https://doi.org/10.1007/s00468-021-02102-1
dc.identifier.citedreferencePontius, J., Halman, J. M., & Schaberg, P. G. ( 2016 ). Seventy years of forest growth and community dynamics in an undisturbed northern hardwood forest. Canadian Journal of Forest Research, 46 ( 7 ), 959 – 967. https://doi.org/10.1139/cjfr-2015-0304
dc.identifier.citedreferencePregitzer, K. S., & Euskirchen, E. S. ( 2004 ). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10 ( 12 ), 2052 – 2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
dc.identifier.citedreferenceR Core Team. ( 2019 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
dc.identifier.citedreferenceReichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et al. ( 2004- ). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11 ( 9 ), 1424 – 1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
dc.identifier.citedreferenceRichardson, A. D. ( 2004- ). AmeriFlux US-Bar Bartlett Experimental Forest. Dataset. https://doi.org/10.17190/AMF/1246030
dc.identifier.citedreferenceRichardson, A. D., Black, T. A., Ciais, P., Delbart, N., Friedl, M. A., Gobron, N., et al. ( 2010 ). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 ( 1555 ), 3227 – 3246. https://doi.org/10.1098/rstb.2010.0102
dc.identifier.citedreferenceRichardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., et al. ( 2013 ). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197 ( 3 ), 850 – 861. https://doi.org/10.1111/nph.12042
dc.identifier.citedreferenceRichardson, A. D., & Hollinger, D. Y. ( 2007 ). A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the CO2 flux record. Agricultural and Forest Meteorology, 147 ( 3–4 ), 199 – 208. https://doi.org/10.1016/j.agrformet.2007.06.004
dc.identifier.citedreferenceRichardson, A. D., Hollinger, D. Y., Shoemaker, J. K., Hughes, H., Savage, K., & Davidson, E. A. ( 2019 ). Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest. Scientific Data, 6 ( 1 ), 117. https://doi.org/10.1038/s41597-019-0119-1
dc.identifier.citedreferenceRocha, A. V., Goulden, M. L., Dunn, A. L., & Wofsy, S. C. ( 2006 ). On linking interannual tree ring variability with observations of whole-forest CO2 flux. Global Change Biology, 12 ( 8 ), 1378 – 1389. https://doi.org/10.1111/j.1365-2486.2006.01179.x
dc.identifier.citedreferenceRossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., et al. ( 2006 ). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301 – 310. https://doi.org/10.1111/j.1469-8137.2006.01660.x
dc.identifier.citedreferenceRussell, M. B., Woodall, C. W., Fraver, S., D’Amato, A. W., Domke, G. M., & Skog, K. E. ( 2014 ). Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems, 17 ( 5 ), 765 – 777. https://doi.org/10.1007/s10021-014-9757-5
dc.identifier.citedreferenceSala, A., Woodruff, D. R., & Meinzer, F. C. ( 2012 ). Carbon dynamics in trees: Feast or famine? Tree Physiology, 32 ( 6 ), 764 – 775. https://doi.org/10.1093/treephys/tpr143
dc.identifier.citedreferenceSchiestl-Aalto, P., Ryhti, K., Mäkelä, A., Peltoniemi, M., Bäck, J., & Kulmala, L. ( 2019 ). Analysis of the NSC storage dynamics in tree organs reveals the allocation to belowground symbionts in the framework of whole tree carbon balance. Frontiers in Forests and Global Change, 2 ( May ), 1 – 14. https://doi.org/10.3389/ffgc.2019.00017
dc.identifier.citedreferenceSchmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., & Su, H. B. ( 2000 ). Measurements of CO 2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology, 103 (4), 357–374. https://doi.org/10.1016/S0168-1923(00)00140-4
dc.identifier.citedreferenceSchmidt, A., Hanson, C., Stephen Chan, W., & Law, B. E. ( 2012 ). Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research G: Biogeosciences, 117 ( 4 ). https://doi.org/10.1029/2012JG002100
dc.identifier.citedreferenceTardif, J., Brisson, J., & Bergeron, Y. ( 2001 ). Dendroclimatic analysis of Acer saccharum, Fagus grandifolia, and Tsuga canadensis from an old-growth forest, southwestern Quebec. Canadian Journal of Forest Research, 31 ( 9 ), 1491 – 1501. https://doi.org/10.1139/cjfr-31-9-1491
dc.identifier.citedreferenceTeets, A. ( 2022 ). AmeriFlux_Wood_biomass_increment (v1.2). Zenodo. https://doi.org/10.5281/zenodo.6208278
dc.identifier.citedreferenceTeets, A., Fraver, S., Hollinger, D. Y., Weiskittel, A. R., Seymour, R. S., & Richardson, A. D. ( 2018 ). Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agricultural and Forest Meteorology, 249 ( February ), 479 – 487. https://doi.org/10.1016/j.agrformet.2017.08.007
dc.identifier.citedreferenceThomas, S. C., & Martin, A. R. ( 2012 ). Carbon content of tree tissues: A synthesis. Forests, 3 ( 2 ), 332 – 352. https://doi.org/10.3390/f3020332
dc.identifier.citedreferenceTurnipseed, A. A., Blanken, P. D., Anderson, D. E., & Monson, R. K. ( 2002 ). Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 110 ( 3 ), 177 – 201. https://doi.org/10.1016/S0168-1923(01)00290-8
dc.identifier.citedreferenceTyree, M., & Cochard, H. ( 1996 ). Summer and winter embolism in oak: Impact on water relations. Annals of Forest Science, 53, 173 – 180. https://doi.org/10.1051/forest:19960201
dc.identifier.citedreferenceUrbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., et al. ( 2007 ). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research: Biogeosciences, 112 ( 2 ), 1 – 25. https://doi.org/10.1029/2006JG000293
dc.identifier.citedreferenceVicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., et al. ( 2012 ). Fertile forests produce biomass more efficiently. Ecology Letters, 15 ( 6 ), 520 – 526. https://doi.org/10.1111/j.1461-0248.2012.01775.x
dc.identifier.citedreferenceWang, J., Ives, N. E., & Lechowiczt, M. J. ( 1992 ). The relation of foliar phenology to xylem embolism in trees. Functional Ecology, 6 ( 4 ), 469 – 475. https://doi.org/10.2307/2389285
dc.identifier.citedreferenceWaring, R. H., Landsberg, J. J., & Williams, M. ( 1998 ). Net primary production of forests: A constant fraction of gross primary production? Tree Physiology, 18 ( 2 ), 129 – 134. https://doi.org/10.1093/treephys/18.2.129
dc.identifier.citedreferenceWutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., et al. ( 2018 ). Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences, 15 ( 16 ), 5015 – 5030. https://doi.org/10.5194/bg-15-5015-2018
dc.identifier.citedreferenceXu, K., Wang, X., Liang, P., An, H., Sun, H., Han, W., & Li, Q. ( 2017 ). Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Scientific Reports, 7 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-017-02022-6
dc.identifier.citedreferenceZha, T. S., Barr, A. G., Bernier, P. Y., Lavigne, M. B., Trofymow, J. A., Amiro, B. D., et al. ( 2013 ). Gross and aboveground net primary production at Canadian forest carbon flux sites. Agricultural and Forest Meteorology, 174–175, 54 – 64. https://doi.org/10.1016/j.agrformet.2013.02.004
dc.identifier.citedreferenceZweifel, R., Eugster, W., Etzold, S., Dobbertin, M., Buchmann, N., & Häsler, R. ( 2010 ). Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytologist, 187 ( 3 ), 819 – 830. https://doi.org/10.1111/j.1469-8137.2010.03301.x
dc.identifier.citedreferenceZweifel, R., & Sterck, F. ( 2018 ). A conceptual tree model explaining legacy effects on stem growth. Frontiers in Forests and Global Change, 1 ( November ), 1 – 9. https://doi.org/10.3389/ffgc.2018.00009
dc.identifier.citedreferenceZweifel, R., Zimmermann, L., Zeugin, F., & Newbery, D. M. ( 2006 ). Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. Journal of Experimental Botany, 57 ( 6 ), 1445 – 1459. https://doi.org/10.1093/jxb/erj125
dc.identifier.citedreferenceAlexander, M. R. ( 2017 ). Determining the role of stand structure in shaping climate-growth relationships in eastern temperate forests of the US (PhD Dissertation). University of Arizona.
dc.identifier.citedreferenceAlexander, M. R., Rollinson, C. R., Babst, F., Trouet, V., & Moore, D. J. P. ( 2018 ). Relative influences of multiple sources of uncertainty on cumulative and incremental tree-ring-derived aboveground biomass estimates. Trees - Structure and Function, 32 ( 1 ), 265 – 276. https://doi.org/10.1007/s00468-017-1629-0
dc.identifier.citedreferenceAnderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., et al. ( 2015 ). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349 ( 6247 ), 528 – 532. https://doi.org/10.1126/science.aab1833
dc.identifier.citedreferenceAnić, M., Ostrogović Sever, M., Alberti, G., Balenović, I., Paladinić, E., Peressotti, A., et al. ( 2018 ). Eddy covariance vs. biometric based estimates of net primary productivity of Pedunculate Oak ( Quercus robur L.) forest in Croatia during ten years. Forests, 9 ( 12 ), 764. https://doi.org/10.3390/f9120764
dc.identifier.citedreferenceBabst, F., Bouriaud, O., Alexander, R., Trouet, V., & Frank, D. ( 2014 ). Toward consistent measurements of carbon accumulation: A multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia, 32 ( 2 ), 153 – 161. https://doi.org/10.1016/j.dendro.2014.01.002
dc.identifier.citedreferenceBabst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., et al. ( 2013 ). Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201 ( 4 ), 1289 – 1303. https://doi.org/10.1111/nph.12589
dc.identifier.citedreferenceBaldocchi, D., Hinks, B., & Meyers, T. ( 1988 ). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69 ( 5 ), 1331 – 1340. https://doi.org/10.2307/1941631
dc.identifier.citedreferenceBarford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., et al. ( 2001 ). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688 – 1691. https://doi.org/10.1126/science.1062962
dc.identifier.citedreferenceBarr, A. G., Richardson, A. D., Hollinger, D. Y., Papale, D., Arain, M. A., Black, T. A., et al. ( 2013 ). Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies. Agricultural and Forest Meteorology, 171–172, 31 – 45. https://doi.org/10.1016/j.agrformet.2012.11.023
dc.identifier.citedreferenceBiederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., et al. ( 2016 ). Terrestrial carbon balance in a drier world: The effects of water availability in southwestern North America. Global Change Biology, 1 – 13. https://doi.org/10.1111/gcb.13222
dc.identifier.citedreferenceBlanken, P. D., Monson, R. K., Burns, S. P., Bowling, D. R., & Turnipseed, A. A. ( 1998- ). AmeriFlux US-NR1 Niwot Ridge Forest (LTER NWT1). Dataset. https://doi.org/10.17190/AMF/1246088
dc.identifier.citedreferenceBouriaud, O., Bréda, N., Dupouey, J.-L., & Granier, A. ( 2005 ). Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Canadian Journal of Forest Research, 35 ( 12 ), 2920 – 2933. https://doi.org/10.1139/x05-202
dc.identifier.citedreferenceBurns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., & Monson, R. K. ( 2015 ). The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site. Biogeosciences, 12 ( 23 ), 7349 – 7377. https://doi.org/10.5194/bg-12-7349-2015
dc.identifier.citedreferenceCarbone, M., Keenan, T., Czimczik, C., Murakami, P., Keefe, J. O., Schaberg, P., et al. ( 2013 ). Age, allocation, and availability of nonstructural carbohydrates in red maple. New Phytologist, 200, 1145 – 1155. https://doi.org/10.1111/nph.12448
dc.identifier.citedreferenceChojnacky, D. C., Heath, L. S., & Jenkins, J. C. ( 2014 ). Updated generalized biomass equations for North American tree species. Forestry, 87 ( 1 ), 129 – 151. https://doi.org/10.1093/forestry/cpt053
dc.identifier.citedreferenceClark, D., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. ( 2001 ). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11 ( 2 ), 356 – 370. Retrieved from http://www.esajournals.org/doi/abs/10.1890/1051-0761(2001)011%255B0356:MNPPIF%255D2.0.CO;2
dc.identifier.citedreferenceCurtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J., Schmid, H., & Wilson, K. B. ( 2002 ). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology, 113 ( 1–4 ), 3 – 19. https://doi.org/10.1016/S0168-1923(02)00099-0
dc.identifier.citedreferenceDaly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., & Pasteris, P. P. ( 2008 ). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 ( 15 ), 3 – 19. https://doi.org/10.1002/joc.1688
dc.identifier.citedreferenceDelpierre, N., Berveiller, D., Granda, E., & Dufrêne, E. ( 2016 ). Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytologist, 210, 459 – 470. https://doi.org/10.1111/nph.13771
dc.identifier.citedreferenceDesai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., et al. ( 2008 ). Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 148 ( 6–7 ), 821 – 838. https://doi.org/10.1016/j.agrformet.2007.11.012
dc.identifier.citedreferenceDietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. ( 2014 ). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667 – 687. https://doi.org/10.1146/annurev-arplant-050213-040054
dc.identifier.citedreferenceDixon, G. E., & Keyser, C. E. ( 2011 ). Northeast (NE) variant overview: Forest vegetation simulator. Fort Collins: U.S. Department of Agriculture, Forest Service, Forest Service Management Service Center.
dc.identifier.citedreferenceDixon, G. E., & Keyser, C. E. ( 2013 ). Central States (CS) variant overview: Forest vegetation simulator. Fort Collins: U.S. Department of Agriculture, Forest Service, Forest Service Management Service Center.
dc.identifier.citedreferenceD’Orangeville, L., Itter, M., Kneeshaw, D., Munger, J. W., Richardson, A. D., Dyer, J. M., et al. ( 2021 ). Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiology, 1 – 13. https://doi.org/10.1093/treephys/tpab101
dc.identifier.citedreferenceDragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond, C. S. B., & Randolph, J. C. ( 2011 ). Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17 ( 2 ), 886 – 897. https://doi.org/10.1111/j.1365-2486.2010.02281.x
dc.identifier.citedreferenceDye, A., Ross Alexander, M., Bishop, D., Druckenbrod, D., Pederson, N., & Hessl, A. ( 2019 ). Size–growth asymmetry is not consistently related to productivity across an eastern US temperate forest network. Oecologia, 189 ( 2 ), 515 – 528. https://doi.org/10.1007/s00442-018-4318-9
dc.identifier.citedreferenceEglin, T., Francois, C., Michelot, A., Delpierre, N., & Damesin, C. ( 2010 ). Linking intra-seasonal variations in climate and tree-ring 13C: A functional modelling approach. Ecological Modelling, 221 ( 15 ), 1779 – 1797. https://doi.org/10.1016/j.ecolmodel.2010.04.007
dc.identifier.citedreferenceEpron, D., Bahn, M., Derrien, D., Lattanzi, F. A., Pumpanen, J., Gessler, A., et al. ( 2012 ). Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiology, 32, 776 – 798. https://doi.org/10.1093/treephys/tps057
dc.identifier.citedreferenceEstiarte, M., & Penuelas, J. ( 1999 ). Excess carbon: The relationship with phenotypical plasticity in storage and defense functions of plants. Orsis, 14, 159 – 203.
dc.identifier.citedreferenceFatichi, S., Leuzinger, S., & Körner, C. ( 2014 ). Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytologist, 201 ( 4 ), 1086 – 1095. https://doi.org/10.1111/nph.12614
dc.identifier.citedreferenceFinzi, A. C., Giasson, M., Barker Plotkin, A. A., Aber, J. D., Boose, E. R., Davidson, E. A., et al. ( 2020 ). Carbon budget of the Harvard Forest long-term ecological research site: Pattern, process, and response to global change. Ecological Monographs, 90 ( 4 ), e01423. https://doi.org/10.1002/ecm.1423
dc.identifier.citedreferenceFoster, J. R., D’Amato, A. W., & Bradford, J. B. ( 2014 ). Looking for age-related growth decline in natural forests: Unexpected biomass patterns from tree rings and simulated mortality. Oecologia, 175 ( 1 ), 363 – 374. https://doi.org/10.1007/s00442-014-2881-2
dc.identifier.citedreferenceFoster, J. R., Finley, A. O., D’amato, A. W., Bradford, J. B., & Banerjee, S. ( 2016 ). Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition or climate response most important? Global Change Biology, 1 – 13. https://doi.org/10.1111/gcb.13208
dc.identifier.citedreferenceFriedlingstein, P., Joel, G., Field, C. B., & Fung, I. Y. ( 1999 ). Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5 ( 7 ), 755 – 770. https://doi.org/10.1046/j.1365-2486.1999.00269.x
dc.identifier.citedreferenceFritts, H. C. ( 1976 ). Tree rings and climate. London, UK: Academic Press.
dc.identifier.citedreferenceFurze, M. E., Huggett, B. A., Aubrecht, D. M., Stolz, C. D., Carbone, M. S., & Richardson, A. D. ( 2019 ). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytologist, 221 ( 3 ), 1466 – 1477. https://doi.org/10.1111/nph.15462
dc.identifier.citedreferenceGaudinski, J., Trumbore, S., Davidson, E., & Zheng, S. ( 2000 ). Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 51, 33 – 69. https://doi.org/10.1023/A:1006301010014
dc.identifier.citedreferenceGea-Izquierdo, G., Bergeron, Y., Huang, J., Lapointe-Garant, M., Grace, J., & Berninger, F. ( 2014 ). The relationship between productivity and tree-ring growth in boreal coniferous forests. Boreal Environment Research, 19 ( November ), 363 – 378.
dc.identifier.citedreferenceGoodsman, D. W., Lieffers, V. J., Landhäusser, S. M., & Erbilgin, N. ( 2010 ). Fertilization of lodgepole pine trees increased diameter growth but reduced root carbohydrate concentrations. Forest Ecology and Management, 260 ( 10 ), 1999- – 1920. https://doi.org/10.1016/j.foreco.2010.08.041
dc.identifier.citedreferenceGough, C. M., Bohrer, G., & Curtis, P. ( 1999- ). AmeriFlux US-UMB Univ. of Mich. Biological Station. Dataset. https://doi.org/10.17190/AMF/1246107
dc.identifier.citedreferenceGough, C. M., Flower, C. E., Vogel, C. S., Dragoni, D., & Curtis, P. S. ( 2009 ). Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agricultural and Forest Meteorology, 149 ( 9 ), 1531 – 1540. https://doi.org/10.1016/j.agrformet.2009.04.006
dc.identifier.citedreferenceGough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., et al. ( 2013 ). Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecological Applications, 23 (5), 1202–1215. https://doi.org/10.1890/12-1554.1
dc.identifier.citedreferenceGough, C. M., Vogel, C. S., Hardiman, B., & Curtis, P. S. ( 2010 ). Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. Forest Ecology and Management, 260 ( 1 ), 36 – 41. https://doi.org/10.1016/j.foreco.2010.03.027
dc.identifier.citedreferenceGough, C. M., Vogel, C. S., Schmid, H. P., Su, H.-B., & Curtis, P. S. ( 2008 ). Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology, 148 ( 2 ), 158 – 170. https://doi.org/10.1016/j.agrformet.2007.08.004
dc.identifier.citedreferenceGoulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., & Wofsy, S. C. ( 1996 ). Measurements of carbon storage by long-term eddy correlation: Methods and a critical evaluation of accuracy. Global Change Biology, 2, 169 – 182. https://doi.org/10.1111/j.1365-2486.1996.tb00070.x
dc.identifier.citedreferenceGranier, A., Breda, N., Longdoz, B., Gross, P., & Ngao, J. ( 2008 ). Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Annals of Forest Science, 64 ( 13 ), 704. https://doi.org/10.1051/forest:2008052
dc.identifier.citedreferenceGuillemot, J., Martin-Stpaul, N. K., Dufrêne, E., François, C., Soudani, K., Ourcival, J. M., & Delpierre, N. ( 2015 ). The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: Implications for modelling. Biogeosciences, 12 ( 9 ), 2773 – 2790. https://doi.org/10.5194/bg-12-2773-2015
dc.identifier.citedreferenceHartmann, H., McDowell, N. G., & Trumbore, S. ( 2015 ). Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2. Tree Physiology, 35 ( 3 ), 243 – 252. https://doi.org/10.1093/treephys/tpv019
dc.identifier.citedreferenceHilbert, D. W., & Reynolds, J. F. ( 1991 ). A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Annals of Botany, 68 ( 5 ), 417 – 425. https://doi.org/10.1093/oxfordjournals.aob.a088273
dc.identifier.citedreferenceHoch, G., & Körner, C. ( 1996- ). Global patterns of mobile carbon stores in trees at the high-elevation tree line. Global Ecology and Biogeography, 21 ( 8 ), 861 – 871. https://doi.org/10.1111/j.1466-8238.2011.00731.x
dc.identifier.citedreferenceHollinger, D. Y. ( 1996- ). AmeriFlux US-Ho1 Howland Forest (main tower). Dataset. https://doi.org/10.17190/AMF/1246061
dc.identifier.citedreferenceHollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., Hughes, H., et al. ( 2004 ). Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, 10, 1689 – 1706. https://doi.org/10.1111/j.1365-2486.2004.00847.x
dc.identifier.citedreferenceHollinger, D. Y., Davidson, E. A., Fraver, S., Hughes, H., Lee, J. T., Richardson, A. D., et al. ( 2021 ). Multi-decadal carbon cycle measurements indicate resistance to external drivers of change at the Howland Forest AmeriFlux Site. Journal of Geophysical Research: Biogeosciences, 126 ( 8 ), 1 – 21. https://doi.org/10.1029/2021jg006276
dc.identifier.citedreferenceHollinger, D. Y., Goltz, S. M., Davidson, E. A., Lee, J. T., Tu, K., & Valentine, H. T. ( 1999 ). Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biology, 5, 891 – 902. https://doi.org/10.1046/j.1365-2486.1999.00281.x
dc.identifier.citedreferenceHoughton, R. A., Hall, F., & Goetz, S. J. ( 2009 ). Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114 ( June ), 1 – 13. https://doi.org/10.1029/2009JG000935
dc.identifier.citedreferenceHu, J., Moore, D. J. P., Burns, S. P., & Monson, R. ( 2010 ). Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology, 16 ( 2 ), 771 – 783. https://doi.org/10.1111/j.1365-2486.2009.01967.x
dc.identifier.citedreferenceKagawa, A., Sugimoto, A., & Maximov, T. C. ( 2006 ). Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist, 171 ( 4 ), 793 – 804. https://doi.org/10.1111/j.1469-8137.2006.01780.x
dc.identifier.citedreferenceKannenberg, S. A., Schwalm, C. R., & Anderegg, W. R. L. ( 2020 ). Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 891 – 901. https://doi.org/10.1111/ele.13485
dc.identifier.citedreferenceKeel, S. G., Siegwolf, R. T. W., & Körner, C. ( 2006 ). Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytologist, 172 ( 2 ), 319 – 329. https://doi.org/10.1111/j.1469-8137.2006.01831.x
dc.identifier.citedreferenceKeenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., et al. ( 2014 ). Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 4, 598 – 604. https://doi.org/10.1038/NCLIMATE2253
dc.identifier.citedreferenceKeyser, C. E., & Dixon, G. E. ( 2008 ). Central Rockies (CR) variant overview: Forest vegetation simulator. Fort Collins: U.S. Department of Agriculture, Forest Service, Forest Service Management Service Center
dc.identifier.citedreferenceKobe, R. K., Iyer, M., & Walters, M. B. ( 2010 ). Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 91 ( 1 ), 166 – 179. https://doi.org/10.1890/09-0027.1
dc.identifier.citedreferenceKörner, C. ( 1998 ). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115 ( 4 ), 445 – 459. https://doi.org/10.1007/s004420050540
dc.identifier.citedreferenceKörner, C. ( 2003 ). Carbon limitation in trees. Journal of Ecology, 91 ( 1 ), 4 – 17. https://doi.org/10.1046/j.1365-2745.2003.00742.x
dc.identifier.citedreferenceKozlowski, T. T. ( 1992 ). Carbohydrate sources and sinks in woody plants. The Botanical Review, 58 ( 2 ), 107 – 222. https://doi.org/10.1007/bf02858600
dc.identifier.citedreferenceKozlowski, T. T., & Pallardy, S. G. ( 2002 ). Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review, 68 ( 2 ), 270 – 334. https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
dc.identifier.citedreferenceKuptz, D., Fleischmann, F., Matyssek, R., & Grams, T. E. E. ( 2011 ). Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous ( Fagus sylvatica ) and evergreen ( Picea abies ) trees assessed via whole-tree stable carbon isotope labeling. New Phytologist, 191, 160 – 172. https://doi.org/10.1111/j.1469-8137.2011.03676.x
dc.identifier.citedreferenceLagergren, F., Jönsson, A. M., Linderson, H., & Lindroth, A. ( 2019 ). Time shift between net and gross CO2 uptake and growth derived from tree rings in pine and spruce. Trees - Structure and Function, 33 ( 3 ), 765 – 776. https://doi.org/10.1007/s00468-019-01814-9
dc.identifier.citedreferenceLeak, W. B., & Smith, M. L. ( 1996 ). Sixty years of management and natural disturbance in a New England forested landscape. Forest Ecology and Management, 81 ( 1–3 ), 63 – 73. https://doi.org/10.1016/0378-1127(95)03662-8
dc.identifier.citedreferenceLedo, A., Paul, K. I., Burslem, D. F. R. P., Ewel, J. J., Barton, C., Battaglia, M., et al. ( 2018 ). Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytologist, 217 ( 1 ), 8 – 11. https://doi.org/10.1111/nph.14863
dc.identifier.citedreferenceLempereur, M., Martin-Stpaul, N. K., Damesin, C., Joffre, R., Ourcival, J. M., Rocheteau, A., & Rambal, S. ( 2015 ). Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: Implications for assessing forest productivity under climate change. New Phytologist, 207 ( 3 ), 579 – 590. https://doi.org/10.1111/nph.13400
dc.identifier.citedreferenceLitton, C. M., Raich, J. W., & Ryan, M. G. ( 2007 ). Carbon allocation in forest ecosystems. Global Change Biology, 13 ( 10 ), 2089 – 2109. https://doi.org/10.1111/j.1365-2486.2007.01420.x
dc.identifier.citedreferenceLovett, G. M., Cole, J. J., & Pace, M. L. ( 2006 ). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems, 9 ( 1 ), 152 – 155. https://doi.org/10.1007/s10021-005-0036-3
dc.identifier.citedreferenceZhao, M., & Running, S. W. ( 2010 ). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329 ( 5994 ), 940 – 943. https://doi.org/10.1126/science.1192666
dc.identifier.citedreferenceLuyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., et al. ( 2007 ). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13 ( 12 ), 2509 – 2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
dc.identifier.citedreferenceMcMurtrie, R. E., & Dewar, R. C. ( 2013 ). New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized. New Phytologist, 199 ( 4 ), 981 – 990. https://doi.org/10.1111/nph.12344
dc.identifier.citedreferenceMildner, M., Bader, M. K. F., Leuzinger, S., Siegwolf, R. T. W., & Körner, C. ( 2014 ). Long-term 13C labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia, 175 ( 3 ), 747 – 762. https://doi.org/10.1007/s00442-014-2935-5
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.