Show simple item record

Faster-haplodiploid evolution under divergence-with-gene-flow: Simulations and empirical data from pine-feeding hymenopterans

dc.contributor.authorBendall, Emily E.
dc.contributor.authorBagley, Robin K.
dc.contributor.authorSousa, Vitor C.
dc.contributor.authorLinnen, Catherine R.
dc.date.accessioned2022-05-06T17:27:09Z
dc.date.available2023-05-06 13:27:08en
dc.date.available2022-05-06T17:27:09Z
dc.date.issued2022-04
dc.identifier.citationBendall, Emily E.; Bagley, Robin K.; Sousa, Vitor C.; Linnen, Catherine R. (2022). "Faster-haplodiploid evolution under divergence-with-gene-flow: Simulations and empirical data from pine-feeding hymenopterans." Molecular Ecology (8): 2348-2366.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/172284
dc.description.abstractAlthough haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid “genomes” (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. As long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a “faster-haplodiploid effect”) in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide single nucleotide polymorphism data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids.
dc.publisherU.S. Department of Agriculture
dc.publisherWiley Periodicals, Inc.
dc.subject.othergenomic differentiation
dc.subject.otherhaplodiploidy
dc.subject.otherlocal adaptation
dc.subject.otherfaster-X
dc.subject.othergene flow
dc.subject.otherspeciation
dc.titleFaster-haplodiploid evolution under divergence-with-gene-flow: Simulations and empirical data from pine-feeding hymenopterans
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172284/1/mec16410.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172284/2/mec16410_am.pdf
dc.identifier.doi10.1111/mec.16410
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferencePatten, M. M., Carioscia, S. A., & Linnen, C. R. ( 2015 ). Biased introgression of mitochondrial and nuclear genes: A comparison of diploid and haplodiploid systems. Molecular Ecology, 24 ( 20 ), 5200 – 5210. https://doi.org/10.1111/mec.13318
dc.identifier.citedreferenceReeve, H. K., & Pfennig, D. W. ( 2003 ). Genetic biases for showy males: Are some genetic systems especially conducive to sexual selection? Proceedings of the National Academy of Sciences, 100 ( 3 ), 1089 – 1094. https://doi.org/10.1073/PNAS.0337427100
dc.identifier.citedreferenceRice, W., & Hostert, E. ( 1993 ). Laboratory experiments on speciation: what have we learned in 40 years? Evolution; International Journal of Organic Evolution, 47 ( 6 ), 1637 – 1653. https://doi.org/10.1111/J.1558-5646.1993.TB01257.X
dc.identifier.citedreferenceRosenblum, E. B., Römpler, H., Schöneberg, T., & Hoekstra, H. E. ( 2010 ). Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 5 ), 2113 – 2117. https://doi.org/10.1073/pnas.0911042107
dc.identifier.citedreferenceSchweyen, H., Rozenberg, A., & Leese, F. ( 2014 ). Detection and Removal of PCR Duplicates in Population Genomic ddRAD Studies by Addition of a Degenerate Base Region (DBR) in Sequencing Adapters. The Biological Bulletin, 227 ( 2 ), 146 – 160. https://doi.org/10.1086/BBLv227n2p146
dc.identifier.citedreferenceServedio, M. R., van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. ( 2011 ). Magic traits in speciation: ‘magic’ but not rare? Trends in Ecology & Evolution, 26 ( 8 ), 389 – 397. https://doi.org/10.1016/J.TREE.2011.04.005
dc.identifier.citedreferenceSousa, V., & Hey, J. ( 2013 ). Understanding the origin of species with genome-scale data: Modelling gene flow. Nature Reviews Genetics, 14 ( 6 ), 404 – 414. https://doi.org/10.1038/nrg3446
dc.identifier.citedreferenceStaab, P. R., Zhu, S., Metzler, D., & Lunter, G. ( 2015 ). scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics, 31 ( 10 ), 1680 – 1682. https://doi.org/10.1093/BIOINFORMATICS/BTU861
dc.identifier.citedreferenceTerasaki Hart, D. E., Bishop, A. P., & Wang, I. J. ( 2021 ). Geonomics: Forward-time, spatially explicit, and arbitrarily complex landscape genomic simulations. Molecular Biology and Evolution, 38 ( 10 ), 4634 – 4646. https://doi.org/10.1093/molbev/msab175
dc.identifier.citedreferenceThurman, T. J., & Barrett, R. D. H. ( 2016 ). The genetic consequences of selection in natural populations. Molecular Ecology, 25 ( 7 ), 1429 – 1448. https://doi.org/10.1111/mec.13559
dc.identifier.citedreferenceVertacnik, K. ( 2020 ). Predicting patterns of gene family evolution in taxa with similar ecological niches (University of Kentucky). University of Kentucky. https://doi.org/10.13023/etd.2020.371
dc.identifier.citedreferenceVertacnik, K. L., & Linnen, C. R. ( 2015 ). Neodiprion lecontei genome assembly Nlec1.0. NCBI/GenBank. doi: https://doi.org/10.15482/USDA.ADC/1235565
dc.identifier.citedreferenceVia, S. ( 2001 ). Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology & Evolution, 16 ( 7 ), 381 – 390. https://doi.org/10.1016/S0169-5347(01)02188-7
dc.identifier.citedreferenceVia, S. ( 2009 ). Natural selection in action during speciation. Proceedings of the National Academy of Sciences, 106 ( Supplement 1 ), 9939 – 9946. https://doi.org/10.1073/pnas.0901397106
dc.identifier.citedreferenceVia, S. ( 2012 ). Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philosophical Transactions of the Royal Society B: Biological Sciences, 367 ( 1587 ), 451 – 460. https://doi.org/10.1098/rstb.2011.0260
dc.identifier.citedreferenceVia, S., & West, J. ( 2008 ). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Molecular Ecology, 17 ( 19 ), 4334 – 4345. https://doi.org/10.1111/J.1365-294X.2008.03921.X
dc.identifier.citedreferenceVicoso, B., & Charlesworth, B. ( 2006, August). Evolution on the X chromosome: Unusual patterns and processes. Nature Reviews Genetics, 7 ( 8 ), 645 – 653. https://doi.org/10.1038/nrg1914
dc.identifier.citedreferenceVicoso, B., & Charlesworth, B. ( 2009 ). Effective population size and the Faster-X effect: an extended model. Evolution, 63 ( 9 ), 2413 – 2426. https://doi.org/10.1111/j.1558-5646.2009.00719.x
dc.identifier.citedreferenceWerren, J. H. ( 1993 ). The evolution of inbreeding in haplodiploid organisms. In N. Thornhill (Ed.), The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives. University of Chicago Press.
dc.identifier.citedreferenceWhite, N. J., & Butlin, R. K. ( 2021 ). Multidimensional divergent selection, local adaptation, and speciation. Evolution, 75 ( 9 ), 2167 – 2178. https://doi.org/10.1111/evo.14312
dc.identifier.citedreferenceWilfert, L., Gadau, J., & Schmid-Hempel, P. ( 2007 ). Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity, 98 ( 4 ), 189 – 197. https://doi.org/10.1038/sj.hdy.6800950
dc.identifier.citedreferenceWilson, L. F., Wilkinson, R. C., & Averill, R. D. ( 1992 ). Redheaded pine sawfly: its ecology and management. U.S. Dept. of Agriculture, Forest Service.
dc.identifier.citedreferenceWood, D. E., & Salzberg, S. L. ( 2014 ). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15 ( 3 ), R46. https://doi.org/10.1186/gb-2014-15-3-r46
dc.identifier.citedreferenceWright, A. E., Harrison, P. W., Zimmer, F., Montgomery, S. H., Pointer, M. A., & Mank, J. E. ( 2015 ). Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution. Molecular Ecology, 24 ( 6 ), 1218 – 1235. https://doi.org/10.1111/mec.13113
dc.identifier.citedreferenceYeaman, S., Aeschbacher, S., & Bürger, R. ( 2016 ). The evolution of genomic islands by increased establishment probability of linked alleles. Molecular Ecology, 25 ( 11 ), 2542 – 2558. https://doi.org/10.1111/mec.13611
dc.identifier.citedreferenceYeaman, S., & Whitlock, M. ( 2011 ). The genetic architecture of adaptation under migration-selection balance. Evolution; International Journal of Organic Evolution, 65 ( 7 ), 1897 – 1911. https://doi.org/10.1111/J.1558-5646.2011.01269.X
dc.identifier.citedreferenceAeschbacher, S., Selby, J. P., Willis, J. H., & Coop, G. ( 2017 ). Population-genomic inference of the strength and timing of selection against gene flow. Proceedings of the National Academy of Sciences, 114 ( 27 ), 7061 – 7066. https://doi.org/10.1073/pnas.1616755114
dc.identifier.citedreferenceAlexander, D. H., Novembre, J., & Lange, K. ( 2009 ). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655 – 1664. https://doi.org/10.1101/gr.094052.109
dc.identifier.citedreferenceAron, S., de Menten, L., van Bockstaele, D. R., Blank, S. M., & Roisin, Y. ( 2005 ). When hymenopteran males reinvented diploidy. Current Biology, 15 ( 9 ), 824 – 827. https://doi.org/10.1016/J.CUB.2005.03.017
dc.identifier.citedreferenceAvery, P. J. ( 1984 ). The population genetics of haplo-diploids and X-linked genes. Genetical Research, 44 ( 3 ), 321 – 341. https://doi.org/10.1017/S0016672300026550
dc.identifier.citedreferenceBagley, R. K., Sousa, V. C., Niemiller, M. L., & Linnen, C. R. ( 2017 ). History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly ( Neodiprion lecontei ). Molecular Ecology, 26 ( 4 ), 1022 – 1044. https://doi.org/10.1111/mec.13972
dc.identifier.citedreferenceBarton, N. H., & Bengtsson, B. O. ( 1986 ). The barrier to genetic exchange between hybridising populations. Heredity, 56 ( 3 ), 357 – 376. https://doi.org/10.1038/hdy.1986.135
dc.identifier.citedreferenceBendall, E. E., Mattingly, K. M., Moehring, A. J., & Linnen, C. R. ( 2020 ). Lack of intrinsic postzygotic isolation in haplodiploid male hybrids despite high genetic distance. BioRxiv, 2020.01.08.898957. https://doi.org/10.1101/2020.01.08.898957
dc.identifier.citedreferenceBendall, E. E., Vertacnik, K. L., & Linnen, C. R. ( 2017 ). Oviposition traits generate extrinsic postzygotic isolation between two pine sawfly species. BMC Evolutionary Biology, 17 ( 1 ), 1 – 15. https://doi.org/10.1186/s12862-017-0872-8
dc.identifier.citedreferenceBenjamin, D. M. ( 1955 ). The Biology and Ecology of the Red-headed Pine Sawfly. U.S. Department of Agriculture.
dc.identifier.citedreferenceBerlocher, S., & Feder, J. ( 2002 ). Sympatric speciation in phytophagous insects: moving beyond controversy? Annual Review of Entomology, 47, 773 – 815. https://doi.org/10.1146/ANNUREV.ENTO.47.091201.145312
dc.identifier.citedreferenceBetancourt, A. J., Kim, Y., & Orr, H. A. ( 2004 ). A pseudohitchhiking model of X vs. autosomal diversity. Genetics, 168 ( 4 ), 2261 – 2269. https://doi.org/10.1534/genetics.104.030999
dc.identifier.citedreferenceBhatia, G., Patterson, N., Sankararaman, S., & Price, A. L. ( 2013 ). Estimating and interpreting FST: the impact of rare variants. Genome Research, 23 ( 9 ), 1514 – 1521. https://doi.org/10.1101/gr.154831.113
dc.identifier.citedreferenceBlackmon, H., Ross, L., & Bachtrog, D. ( 2017 ). Sex determination, sex chromosomes, and karyotype evolution in insects. Journal of Heredity, 108 ( 1 ), 78 – 93. https://doi.org/10.1093/jhered/esw047
dc.identifier.citedreferenceBolnick, D. I., & Fitzpatrick, B. M. ( 2007 ). Sympatric speciation: Models and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 38, 459 – 487. https://doi.org/10.1146/annurev.ecolsys.38.091206.095804
dc.identifier.citedreferenceBoulton, R. A., Collins, L. A., & Shuker, D. M. ( 2015 ). Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biological Reviews, 90 ( 2 ), 599 – 627. https://doi.org/10.1111/BRV.12126
dc.identifier.citedreferenceBurford Reiskind, M. O., Coyle, K., Daniels, H. V., Labadie, P., Reiskind, M. H., Roberts, N. B., Schaff, J., & Vargo, E. L. ( 2016 ). Development of a universal double-digest RAD sequencing approach for a group of nonmodel, ecologically and economically important insect and fish taxa. Molecular Ecology Resources, 16 ( 6 ), 1303 – 1314. https://doi.org/10.1111/1755-0998.12527
dc.identifier.citedreferenceBush, G. L. ( 1975 ). Modes of animal speciation. Annual Review of Ecology and Systematics, 6 ( 1 ), 339 – 364. https://doi.org/10.1146/annurev.es.06.110175.002011
dc.identifier.citedreferenceBush, G. L. ( 1975 ). Sympatric speciation in phytophagous parasitic insects. In P. W. Price (Ed.), Evolutionary Strategies of Parasitic Insects and Mites (pp. 187 – 206 ). Springer. https://doi.org/10.1007/978-1-4615-8732-3_9
dc.identifier.citedreferenceCharlesworth, B. ( 2012 ). The role of background selection in shaping patterns of molecular evolution and variation: evidence from variability on the Drosophila X Chromosome. Genetics, 191 ( 1 ), 233 – 246. https://doi.org/10.1534/genetics.111.138073
dc.identifier.citedreferenceCharlesworth, B., Campos, J. L., & Jackson, B. C. ( 2018 ). Faster-X evolution: Theory and evidence from Drosophila. Molecular Ecology, 27 ( 19 ), 3753 – 3771. https://doi.org/10.1111/mec.14534
dc.identifier.citedreferenceCharlesworth, B., Coyne, J. A., & Barton, N. H. ( 1987 ). The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist, 130 ( 1 ), 113 – 146. https://doi.org/10.1086/284701
dc.identifier.citedreferenceCharlesworth, B., Morgan, M. T., & Charlesworth, D. ( 1993 ). The effect of deleterious mutations on neutral molecular variation. Genetics, 134 ( 4 ), 1289 – 1303. https://doi.org/10.1093/genetics/134.4.1289
dc.identifier.citedreferenceCharlesworth, B., Nordborg, M., & Charlesworth, D. ( 1997 ). The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genetical Research, 70 ( 2 ), 155 – 174.
dc.identifier.citedreferenceChen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. ( 2010 ). Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5 ( 8 ), e11963. https://doi.org/10.1371/journal.pone.0011963
dc.identifier.citedreferenceCodella, S. G., & Raffa, K. F. ( 2002 ). Desiccation of Pinus foliage induced by conifer sawfly oviposition: effect on egg viability. Ecological Entomology, 27 ( 5 ), 618 – 621. https://doi.org/10.1046/j.1365-2311.2002.00447.x
dc.identifier.citedreferenceCoppel, H., & Benjamin, D. ( 1965 ). Bionomics of the Nearctic pine-feeding diprionids. Annual Review of Entomology, 10, 69 – 96. https://doi.org/10.1146/annurev.en.10.010165.000441
dc.identifier.citedreferenceCraig, T. P., & Mopper, S. ( 1993 ). Sex ratio variation in sawflies. In M. Wagner, & K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants (pp. 61 – 92 ). Academic Press.
dc.identifier.citedreferenceCruickshank, T. E., & Hahn, M. W. ( 2014 ). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23 ( 13 ), 3133 – 3157. https://doi.org/10.1111/mec.12796
dc.identifier.citedreferenceCurtsinger, J. W., Service, P. M., & Prout, T. ( 1994 ). Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. The American Naturalist, 144 ( 2 ), 210 – 228. https://doi.org/10.1086/285671
dc.identifier.citedreferenceDanecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. ( 2011 ). The variant call format and VCFtools. Bioinformatics, 27 ( 15 ), 2156 – 2158. https://doi.org/10.1093/bioinformatics/btr330
dc.identifier.citedreferenceDavies, N. G., & Gardner, A. ( 2014 ). Evolution of paternal care in diploid and haplodiploid populations. Journal of Evolutionary Biology, 27 ( 6 ), 1012 – 1019. https://doi.org/10.1111/jeb.12375
dc.identifier.citedreferencede la Filia, A. G., Bain, S. A., & Ross, L. ( 2015 ). Haplodiploidy and the reproductive ecology of Arthropods. Current Opinion in Insect Science, 9, 36 – 43. https://doi.org/10.1016/j.cois.2015.04.018
dc.identifier.citedreferenceDearden, P. K., Wilson, M. J., Sablan, L., Osborne, P. W., Havler, M., McNaughton, E., Kimura, K., Milshina, N. V., Hasselmann, M., Gempe, T., Schioett, M., Brown, S. J., Elsik, C. G., Holland, P. W. H., Kadowaki, T., & Beye, M. ( 2006 ). Patterns of conservation and change in honey bee developmental genes. Genome Research, 16 ( 11 ), 1376 – 1384. https://doi.org/10.1101/gr.5108606
dc.identifier.citedreferenceExcoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. ( 2013 ). Robust demographic inference from genomic and SNP data. PLoS Genetics, 9 ( 10 ), e1003905. https://doi.org/10.1371/journal.pgen.1003905
dc.identifier.citedreferenceFeder, J. L., Egan, S. P., & Nosil, P. ( 2012 ). The genomics of speciation-with-gene-flow. Trends in Genetics, 28 ( 7 ), 342 – 350. https://doi.org/10.1016/j.tig.2012.03.009
dc.identifier.citedreferenceFeder, J. L., Gejji, R., Yeaman, S., & Nosil, P. ( 2012 ). Establishment of new mutations under divergence and genome hitchhiking. Philosophical Transactions of the Royal Society B: Biological Sciences, 367 ( 1587 ), 461 – 474. https://doi.org/10.1098/rstb.2011.0256
dc.identifier.citedreferenceFeder, J. L., & Nosil, P. ( 2010 ). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution, 64 ( 6 ), 1729 – 1747. https://doi.org/10.1111/j.1558-5646.2009.00943.x
dc.identifier.citedreferenceFelsenstein, J. ( 1981 ). Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution, 35 ( 1 ), 124 – 138. https://doi.org/10.1111/j.1558-5646.1981.tb04864.x
dc.identifier.citedreferenceFlaxman, S. M., Feder, J. L., & Nosil, P. ( 2012 ). Spatially explicit models of divergence and genome hitchhiking. Journal of Evolutionary Biology, 25 ( 12 ), 2633 – 2650. https://doi.org/10.1111/JEB.12013
dc.identifier.citedreferenceFlaxman, S. M., Feder, J. L., & Nosil, P. ( 2013 ). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67 ( 9 ), 2577 – 2591. https://doi.org/10.1111/evo.12055
dc.identifier.citedreferenceFoote, A. D. ( 2018 ). Sympatric Speciation in the Genomic Era. Trends in Ecology and Evolution, 33 ( 2 ), 85 – 95. https://doi.org/10.1016/j.tree.2017.11.003
dc.identifier.citedreferenceForbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. ( 2018 ). Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology, 18 ( 1 ), 1 – 11. https://doi.org/10.1186/s12898-018-0176-x
dc.identifier.citedreferenceFraïsse, C., & Sachdeva, H. ( 2021 ). The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs autosomes. Genetics, 217 ( 2 ), iyaa025.
dc.identifier.citedreferenceFrank, S. A. ( 1991 ). Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution, 45 ( 2 ), 262 – 267. https://doi.org/10.1111/j.1558-5646.1991.tb04401.x
dc.identifier.citedreferenceFusco, D., & Uyenoyama, M. K. ( 2011 ). Sex-specific incompatibility generates locus-specific rates of introgression between species. Genetics, 189 ( 1 ), 267 – 288. https://doi.org/10.1534/genetics.111.130732
dc.identifier.citedreferenceGardner, A. ( 2012 ). Evolution of maternal care in diploid and haplodiploid populations. Journal of Evolutionary Biology, 25 ( 8 ), 1479 – 1486. https://doi.org/10.1111/j.1420-9101.2012.02551.x
dc.identifier.citedreferenceGhenu, A.-H., Blanckaert, A., Butlin, R. K., Kulmuni, J., & Bank, C. ( 2018 ). Conflict between heterozygote advantage and hybrid incompatibility in haplodiploids (and sex chromosomes). Molecular Ecology, 27 ( 19 ), 3935 – 3949. https://doi.org/10.1111/mec.14482
dc.identifier.citedreferenceGlastad, K. M., Hunt, B. G., Yi, S. V., & Goodisman, M. A. D. ( 2014 ). Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proceedings of the Royal Society B: Biological Sciences, 281 ( 1785 ), 20140411. https://doi.org/10.1098/RSPB.2014.0411
dc.identifier.citedreferenceHaller, B. C., & Messer, P. W. ( 2019 ). SLiM 3: forward genetic simulations beyond the wright-fisher model. Molecular Biology and Evolution, 36 ( 3 ), 632 – 637. https://doi.org/10.1093/molbev/msy228
dc.identifier.citedreferenceHamilton, W. D. ( 1964a ). The genetical evolution of social behaviour. I. Journal of Theoretical Biology, 7 ( 1 ), 1 – 16. https://doi.org/10.1016/0022-5193(64)90038-4
dc.identifier.citedreferenceHamilton, W. D. ( 1964b ). The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7 ( 1 ), 17 – 52. https://doi.org/10.1016/0022-5193(64)90039-6
dc.identifier.citedreferenceHamilton, W. D. ( 1967 ). Extraordinary sex ratios. Science, 156 ( 3774 ), 477 – 488. https://doi.org/10.1126/science.156.3774.477
dc.identifier.citedreferenceHamilton, W. D. ( 1972 ). Altruism and Related Phenomena. Annual Review of Ecological Systems, 3, 193 – 232.
dc.identifier.citedreferenceHarper, K. E., Bagley, R. K., Thompson, K. L., & Linnen, C. R. ( 2016 ). Complementary sex determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly. Heredity, 117 ( 5 ), 326 – 335. https://doi.org/10.1038/hdy.2016.46
dc.identifier.citedreferenceHartl, D. L. ( 1972 ). A Fundamental Theorem of Natural Selection for Sex Linkage or Arrhenotoky. The American Naturalist, 106 ( 950 ), 516 – 524. https://doi.org/10.1086/282791
dc.identifier.citedreferenceHedrick, P. W., & Parker, J. D. ( 1997 ). Evolutionary Genetics and Genetic Variation of Haplodiploids and X-Linked Genes. Annual Review of Ecology and Systematics, 28, 55 – 83. https://doi.org/10.1146/annurev.ecolsys.28.1.55
dc.identifier.citedreferenceHey, J., & Pinho, C. ( 2012 ). Population genetics and objectivity in species diagnosis. Evolution, 66 ( 5 ), 1413 – 1429. https://doi.org/10.1111/j.1558-5646.2011.01542.x
dc.identifier.citedreferenceHitchcock, T., Gardner, A., & Ross, L. ( 2022 ). Sexual antagonism in haplodiploids. Evolution, 76 ( 2 ), 292 – 308. https://doi.org/10.1111/evo.14398
dc.identifier.citedreferenceHoban, S., Bertorelle, G., & Gaggiotti, O. E. ( 2012 ). Computer simulations: tools for population and evolutionary genetics. Nature Reviews Genetics, 13 ( 2 ), 110 – 122. https://doi.org/10.1038/nrg3130
dc.identifier.citedreferenceHölldobler, B., & Wilson, E. O. ( 1990 ). The Ants. Cambridge. Harvard University Press. Retrieved from. https://doi.org/10.1007/978-3-662-10306-7
dc.identifier.citedreferenceHurst, L. D., & Pomiankowski, A. ( 1991 ). Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane’s rule and related phenomena. Genetics, 128 ( 4 ), 841 – 858. https://doi.org/10.1093/genetics/128.4.841
dc.identifier.citedreferenceIrwin, D. E. ( 2018 ). Sex chromosomes and speciation in birds and other ZW systems. Molecular Ecology, 27 ( 19 ), 3831 – 3851. https://doi.org/10.1111/mec.14537
dc.identifier.citedreferenceKirkpatrick, M., & Barton, N. ( 2006 ). Chromosome inversions, local adaptation and speciation. Genetics, 173 ( 1 ), 419 – 434. https://doi.org/10.1534/genetics.105.047985
dc.identifier.citedreferenceKirkpatrick, M., & Hall, D. W. ( 2004 ). Sexual selection and sex linkage. Evolution, 58 ( 4 ), 683 – 691. https://doi.org/10.1111/j.0014-3820.2004.tb00401.x
dc.identifier.citedreferenceKlein, K., Kokko, H., & ten Brink, H.. ( 2021 ). Disentangling verbal arguments: Intralocus sexual conflict in haplodiploids. American Naturalist, 198 ( 6 ), 678 – 693. https://doi.org/10.1086/716908/ASSET/IMAGES/LARGE/FG4.JPEG
dc.identifier.citedreferenceKnerer, G., & Atwood, C. E. ( 1973 ). Diprionid sawflies: Polymorphism and speciation. Science, 179 ( 4078 ), 1090 – 1099. https://doi.org/10.1126/science.179.4078.1090
dc.identifier.citedreferenceKoevoets, T., & Beukeboom, L. W. ( 2008 ). Genetics of postzygotic isolation and Haldane’s rule in haplodiploids. Heredity, 102 ( 1 ), 16 – 23. https://doi.org/10.1038/hdy.2008.44
dc.identifier.citedreferenceKong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson, B., & Stefansson, K. ( 2002 ). A high-resolution recombination map of the human genome. Nature Genetics, 31 ( 3 ), 241 – 247. https://doi.org/10.1038/ng917
dc.identifier.citedreferenceKraaijeveld, K. ( 2009 ). Male genes with nowhere to hide sexual conflict in haplodiploids. Animal Biology, 59 ( 4 ), 403 – 415. https://doi.org/10.1163/157075509X12499949744225
dc.identifier.citedreferenceLangmead, B., & Salzberg, S. L. ( 2012 ). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9 ( 4 ), 357 – 359. https://doi.org/10.1038/nmeth.1923
dc.identifier.citedreferenceLasne, C., Sgrò, C. M., & Connallon, T. ( 2017 ). The Relative Contributions of the X Chromosome and Autosomes to Local Adaptation. Genetics, 205 ( 3 ), 1285 – 1304. https://doi.org/10.1534/genetics.116.194670
dc.identifier.citedreferenceLester, L. J., & Selander, R. K. ( 1979 ). Population genetics of haplodiploid insects. Genetics, 92 ( 4 ), 1329 – 1345. https://doi.org/10.1093/genetics/92.4.1329
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., & Durbin, R. ( 2009 ). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25 ( 16 ), 2078 – 2079. https://doi.org/10.1093/bioinformatics/btp352
dc.identifier.citedreferenceLindstedt, C., Bagley, R., Calhim, S., Jones, M., & Linnen, C. R. ( 2022 ). The impact of life stage and pigment source on the evolution of novel warning signal traits. Evolution, in Press, https://doi.org/10.1111/evo.14443
dc.identifier.citedreferenceLinnen, C. R., & Farrell, B. D. ( 2007 ). Mitonuclear discordance is caused by rampant mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae) sawflies. Evolution, 61 ( 6 ), 1417 – 1438. https://doi.org/10.1111/j.1558-5646.2007.00114.x
dc.identifier.citedreferenceLinnen, C. R., & Farrell, B. D. ( 2008 ). Comparison of methods for species-tree inference in the sawfly genus Neodiprion (Hymenoptera: Diprionidae). Systematic Biology, 57 ( 6 ), 876 – 890. https://doi.org/10.1080/10635150802580949
dc.identifier.citedreferenceLinnen, C. R., & Farrell, B. D. ( 2010 ). A test of the sympatric host race formation hypothesis in Neodiprion (Hymenoptera: Diprionidae). Proceedings of the Royal Society B: Biological Sciences, 277 ( 1697 ), 3131 – 3138. https://doi.org/10.1098/rspb.2010.0577
dc.identifier.citedreferenceLinnen, C. R., O’Quin, C. T., Shackleford, T., Sears, C. R., & Lindstedt, C. ( 2018 ). Genetic basis of body color and spotting pattern in redheaded pine sawfly larvae ( Neodiprion lecontei ). Genetics, 209 ( 1 ), 291 – 305. https://doi.org/10.1534/genetics.118.300793
dc.identifier.citedreferenceLohse, K., & Ross, L. ( 2015 ). What haplodiploids can teach us about hybridization and speciation. Molecular Ecology, 24 ( 20 ), 5075 – 5077. https://doi.org/10.1111/mec.13393
dc.identifier.citedreferenceMartin, M. ( 2011 ). Cutadapt removes adapter sequences from high-throughput sequencing reads | Martin | EMBnet.journal. EMBnet.Journal, 1, 10 – 12. https://doi.org/10.14806/ej.17.1.200
dc.identifier.citedreferenceMeiklejohn, C. D., Landeen, E. L., Gordon, K. E., Rzatkiewicz, T., Kingan, S. B., Geneva, A. J., Vedanayagam, J. P., Muirhead, C. A., Garrigan, D., Stern, D. L., & Presgraves, D. C. ( 2018 ). Gene flow mediates the role of sex chromosome meiotic drive during complex speciation. eLife, 7, e35468. https://doi.org/10.7554/eLife.35468
dc.identifier.citedreferenceMeisel, R. P., & Connallon, T. ( 2013, September). The faster-X effect: Integrating theory and data. Trends in Genetics, 29, 537 – 544. https://doi.org/10.1016/j.tig.2013.05.009
dc.identifier.citedreferenceMoran, P. ( 1959 ). The Theory of Some Genetical Effects of Population Subdivision. Australian Journal of Biological Sciences, 12 ( 2 ), 109. https://doi.org/10.1071/bi9590109
dc.identifier.citedreferenceMuirhead, C. A., & Presgraves, D. C. ( 2016 ). Hybrid Incompatibilities, Local Adaptation, and the Genomic Distribution of Natural Introgression between Species. The American Naturalist, 187 ( 2 ), 249 – 261. https://doi.org/10.1086/684583
dc.identifier.citedreferenceNormark, B. B. ( 2003 ). November 28). The Evolution of Alternative Genetic Systems in Insects. Annual Review of Entomology, 48, 397 – 423. https://doi.org/10.1146/annurev.ento.48.091801.112703
dc.identifier.citedreferenceNosil, P., & Feder, J. L. ( 2012 ). Genomic divergence during speciation: Causes and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 367 ( 1587 ), 332 – 342. https://doi.org/10.1098/rstb.2011.0263
dc.identifier.citedreferenceNouhaud, P., Blanckaert, A., Bank, C., & Kulmuni, J. ( 2020, January 1). Understanding admixture: Haplodiploidy to the rescue. Trends in Ecology and Evolution, 35, 34 – 42. https://doi.org/10.1016/j.tree.2019.08.013
dc.identifier.citedreferenceOwen, R. E. ( 1986 ). Gene frequency dines at X-linked or haplodiploid loci. Heredity, 57 ( 2 ), 209 – 219. https://doi.org/10.1038/hdy.1986.111
dc.identifier.citedreferenceOwen, R. E. ( 1988 ). Selection at two sex-linked loci. Heredity, 60 ( 3 ), 415 – 425. https://doi.org/10.1038/hdy.1988.59
dc.identifier.citedreferencePatten, M. M. ( 2018 ). Selfish X chromosomes and speciation. Molecular Ecology, 27 ( 19 ), 3772 – 3782. https://doi.org/10.1111/mec.14471
dc.identifier.citedreferencePatterson, N. J., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., & Reich, D. ( 2012 ). Ancient admixture in human history. Genetics, 192 ( 3 ), 1065 – 1093. https://doi.org/10.1534/genetics.112.145037
dc.identifier.citedreferencePeterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. ( 2012 ). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7 ( 5 ), e37135. https://doi.org/10.1371/journal.pone.0037135
dc.identifier.citedreferencePhung, T. N., Huber, C. D., & Lohmueller, K. E. ( 2016 ). Determining the Effect of Natural Selection on Linked Neutral Divergence across Species. PLOS Genetics, 12 ( 8 ), e1006199. https://doi.org/10.1371/JOURNAL.PGEN.1006199
dc.identifier.citedreferencePinho, C., & Hey, J. ( 2010 ). Divergence with Gene Flow: Models and Data. Annual Review of Ecology, Evolution, and Systematics, 41 ( 1 ), 215 – 230. https://doi.org/10.1146/annurev-ecolsys-102209-144644
dc.identifier.citedreferencePresgraves, D. C. ( 2018 ). Evaluating genomic signatures of “the large X-effect” during complex speciation. Molecular Ecology, 27 ( 19 ), 3822 – 3830. https://doi.org/10.1111/mec.14777
dc.identifier.citedreferenceRauf, A., & Benjamin, D. M. ( 1980 ). The biology of the white pine sawfly, Neodiprion pinetum (Hymenoptera: Diprionidae) in Wisconsin. The Great Lakes Entomologist, 13 ( 4 ), 219 – 224.
dc.identifier.citedreferenceRautiala, P., Helanterä, H., & Puurtinen, M. ( 2019 ). Extended haplodiploidy hypothesis. Evolution Letters, 3 ( 3 ), 263 – 270. https://doi.org/10.1002/evl3.119
dc.identifier.citedreferenceRavinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., & Westram, A. M. ( 2017 ). Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. Journal of Evolutionary Biology, 30 ( 8 ), 1450 – 1477. https://doi.org/10.1111/jeb.13047
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.