Show simple item record

Distinct influenza surveillance networks and their agreement in recording regional influenza circulation: Experience from Southeast Michigan

dc.contributor.authorDeJonge, Peter M.
dc.contributor.authorMonto, Arnold S.
dc.contributor.authorMalosh, Ryan E.
dc.contributor.authorPetrie, Joshua G.
dc.contributor.authorSegaloff, Hannah E.
dc.contributor.authorMcSpadden, Erin
dc.contributor.authorCheng, Caroline
dc.contributor.authorBazzi, Latifa
dc.contributor.authorCallear, Amy
dc.contributor.authorJohnson, Emileigh
dc.contributor.authorTruscon, Rachel
dc.contributor.authorMartin, Emily T.
dc.date.accessioned2022-05-06T17:27:44Z
dc.date.available2023-06-06 13:27:42en
dc.date.available2022-05-06T17:27:44Z
dc.date.issued2022-05
dc.identifier.citationDeJonge, Peter M.; Monto, Arnold S.; Malosh, Ryan E.; Petrie, Joshua G.; Segaloff, Hannah E.; McSpadden, Erin; Cheng, Caroline; Bazzi, Latifa; Callear, Amy; Johnson, Emileigh; Truscon, Rachel; Martin, Emily T. (2022). "Distinct influenza surveillance networks and their agreement in recording regional influenza circulation: Experience from Southeast Michigan." Influenza and Other Respiratory Viruses 16(3): 521-531.
dc.identifier.issn1750-2640
dc.identifier.issn1750-2659
dc.identifier.urihttps://hdl.handle.net/2027.42/172297
dc.description.abstractIntroductionIn Southeast Michigan, active surveillance studies monitor influenza activity in hospitals, ambulatory clinics, and community households. Across five respiratory seasons, we assessed the contribution of data from each of the three networks towards improving our overall understanding of regional influenza circulation.MethodsAll three networks used case definitions for acute respiratory illness (ARI) and molecularly tested for influenza from research-collected respiratory specimens. Age- and network-stratified epidemic curves were created for influenza A and B. We compared stratified epidemic curves visually and by centering at seasonal midpoints.ResultsAcross all seasons (from 2014/2015 through 2018/2019), epidemic curves from each of the three networks were comparable in terms of both timing and magnitude. Small discrepancies in epidemics recorded by each network support previous conclusions about broader characteristics of particular influenza seasons.ConclusionInfluenza surveillance systems based in hospital, ambulatory clinic, and community household settings appear to provide largely similar information regarding regional epidemic activity. Together, multiple levels of influenza surveillance provide a detailed view of regional influenza epidemics, but a single surveillance system—regardless of population subgroup monitored—appears to be sufficient in providing vital information regarding community influenza epidemics.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurveillance
dc.subject.otherinfluenza
dc.subject.othersentinel surveillance
dc.subject.othersyndromic surveillance
dc.titleDistinct influenza surveillance networks and their agreement in recording regional influenza circulation: Experience from Southeast Michigan
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172297/1/irv12944.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172297/2/irv12944_am.pdf
dc.identifier.doi10.1111/irv.12944
dc.identifier.sourceInfluenza and Other Respiratory Viruses
dc.identifier.citedreferenceFlu vaccination coverage 2014–15; 2015. http://www.cdc.gov/flu/fluvaxview/coverage-1415estimates.htm
dc.identifier.citedreferenceNeuzil KM, Hohlbein C, Zhu Y. Illness among schoolchildren during influenza season. Arch Pediatr Adolesc Med. 2002; 156 ( 10 ): 986 - 991. https://doi.org/10.1001/archpedi.156.10.986
dc.identifier.citedreferenceSočan M, Erčulj V, Lajovic J. Early detection of influenza-like illness through medication sales. Cent Eur J Public Health. 2012; 20 ( 2 ): 156 - 162. https://doi.org/10.21101/cejph.a3735
dc.identifier.citedreferenceFleming DM, Zambon M, Bartelds AIM, De Jong JC. The duration and magnitude of influenza epidemics: A study of surveillance data from sentinel general practices in England, Wales and the Netherlands. Eur J Epidemiol. 1999; 15 ( 5 ): 467 - 473. https://doi.org/10.1023/A:1007525402861
dc.identifier.citedreferenceYang X, Liu D, Wei K, et al. Comparing the similarity and difference of three influenza surveillance systems in China. Sci Rep. 2018; 8 ( 1 ): 1 - 7. https://doi.org/10.1038/s41598-018-21059-9
dc.identifier.citedreferenceOhmit SE, Petrie JG, Malosh RE, et al. Influenza vaccine effectiveness in the community and the household. Clin Infect Dis. 2013; 56 ( 10 ): 1363 - 1369. https://doi.org/10.1093/cid/cit060
dc.identifier.citedreferencePetrie JG, Ohmit SE, Cowling BJ, et al. Influenza transmission in a cohort of households with children: 2010–2011. PLoS ONE. 2013; 8 ( 9 ): 2010 - 2011. https://doi.org/10.1371/journal.pone.0075339
dc.identifier.citedreferenceMalosh R, Ohmit SE, Petrie JG, Thompson MG, Aiello AE, Monto AS. Factors associated with influenza vaccine receipt in community dwelling adults and their children. Vaccine. 2014; 32 ( 16 ): 1841 - 1847. https://doi.org/10.1016/j.vaccine.2014.01.075
dc.identifier.citedreferenceMonto AS, Malosh RE, Evans R, et al. Data resource profile: Household Influenza Vaccine Evaluation (HIVE) Study. Int J Epidemiol. 2019; 48 ( 4 ): 1040 - 1040G. https://doi.org/10.1093/ije/dyz086
dc.identifier.citedreferenceZimmerman RK, Nowalk MP, Chung J, et al. 2014–2015 influenza vaccine effectiveness in the United States by vaccine type. Clin Infect Dis. 2016; 63 ( 12 ): 1564 - 1573. https://doi.org/10.1093/cid/ciw635
dc.identifier.citedreferenceRussell KE, Fowlkes A, Stockwell MS, et al. Comparison of outpatient medically attended and community-level influenza-like illness—New York City, 2013-2015. Influenza Other Respi Viruses. 2018; 12 ( 3 ): 336 - 343. https://doi.org/10.1111/irv.12540
dc.identifier.citedreferencePetrie JG, Ohmit SE, Cheng CK, et al. Influenza vaccine effectiveness against antigenically drifted influenza higher than expected in hospitalized adults: 2014-2015. Clin Infect Dis. 2016; 63 ( 8 ): 1017 - 1025. https://doi.org/10.1093/cid/ciw432
dc.identifier.citedreferenceFerdinands JM, Gaglani M, Martin ET, et al. Prevention of influenza hospitalization among adults in the United States, 2015-2016: results from the US Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN). J Infect Dis. 2019; 220 ( 8 ): 1265 - 1275. https://doi.org/10.1093/infdis/jiy723
dc.identifier.citedreferenceSegaloff HE, Petrie JG, Malosh RE, et al. Severe morbidity among hospitalized adults with acute influenza and other respiratory infections; 2014-15 and 2015-16 Corresponding Author and Request for Reprints: HHS Public Access. Epidemiol Infect. 2018; 146 ( 11 ): 1350 - 1358. https://doi.org/10.1017/S0950268818001486
dc.identifier.citedreferenceFlannery B, Chung JR, Thaker SN, et al. Interim estimates of 2016–17 seasonal influenza vaccine effectiveness—United States, February 2017. MMWR Morb Mortal Wkly Rep. 2017; 66 ( 6 ): 167 - 171. https://doi.org/10.15585/mmwr.mm6606a3
dc.identifier.citedreferencePetrie JG, Eisenberg MC, Ng S, et al. Application of an individual-based transmission hazard model for estimation of influenza vaccine effectiveness in a household cohort. Am J Epidemiol. 2017; 186 ( 12 ): 1380 - 1388. https://doi.org/10.1093/aje/kwx217
dc.identifier.citedreferenceAppiah GRD, Blanton L, D’Mello T, et al. Influenza activity—United states, 2014–15 season and composition of the 2015–16 influenza vaccine. Morb Mortal Wkly Rep. 2015; 64 ( 21 ): 583 - 590.
dc.identifier.citedreferenceFlannery B, Clippard J, Zimmerman RK, et al. Early estimates of seasonal influenza vaccine effectiveness—United States, January 2015. Morb Mortal Wkly Rep. 2015; 64 ( 1 ): 10 - 15.
dc.identifier.citedreferenceRolfes MA, Flannery B, Chung JR, et al. Effects of influenza vaccination in the United States during the 2017-2018 influenza season. Clin Infect Dis. 2019; 69 ( 11 ): 1845 - 1853. https://doi.org/10.1093/cid/ciz075
dc.identifier.citedreferenceBiggerstaff M, Kniss K, Jernigan DB, et al. Systematic assessment of multiple routine and near real-time indicators to classify the severity of influenza seasons and pandemics in the United States, 2003-2004 through 2015-2016. Am J Epidemiol. 2018; 187 ( 5 ): 1040 - 1050. https://doi.org/10.1093/aje/kwx334
dc.identifier.citedreferenceXu X, Blanton L, Elal AIA, et al. Update: influenza activity in the United States during the 2018–19 season and composition of the 2019–20 influenza vaccine. MMWR Morb Mortal Wkly Rep. 2019; 68 ( 24 ): 544 - 551. https://doi.org/10.15585/mmwr.mm6824a3
dc.identifier.citedreferenceSnacken R, Lion J, Van Casteren V, et al. Five years of sentinel surveillance of acute respiratory infections (1985-1990): the benefits of an influenza early warning system. Eur J Epidemiol. 1992; 8 ( 4 ): 485 - 490. https://doi.org/10.1007/BF00146364
dc.identifier.citedreferenceMughini-Gras L, Pijnacker R, Enserink R, Heusinkveld M, van der Hoek W, van Pelt W. Influenza-like illness in households with children of preschool age. Pediatr Infect Dis J. 2016; 35 ( 3 ): 242 - 248. https://doi.org/10.1097/INF.0000000000000988
dc.identifier.citedreferenceMacIntyre CR, Ridda I, Seale H, et al. Respiratory viruses transmission from children to adults within a household. Vaccine. 2012; 30 ( 19 ): 3009 - 3014. https://doi.org/10.1016/j.vaccine.2011.11.047
dc.identifier.citedreferencePeltola V, Waris M, Österback R, Susi P, Ruuskanen O, Hyypiä T. Rhinovirus transmission within families with children: incidence of symptomatic and asymptomatic infections. J Infect Dis. 2008; 197 ( 3 ): 382 - 389. https://doi.org/10.1086/525542
dc.identifier.citedreferenceFrank AL, Taber LH, Glezen WP, Geyer EA, Mcilwain S, Paredes A. Influenza B virus infections in the community and the family. Am J Epidemiol. 1983; 118 ( 3 ): 313 - 325.
dc.identifier.citedreferenceBrown CR, Mccaw JM, Fairmaid EJ, et al. Factors associated with transmission of influenza-like illness in a cohort of households containing multiple children. Influenza Other Respi Viruses. 2015; 9 ( 5 ): 247 - 254. https://doi.org/10.1111/irv.12331
dc.identifier.citedreferenceAdler FR, Stockmann C, Ampofo K, Pavia AT, Byington CL. Transmission of rhinovirus in the Utah BIG-LoVE families: consequences of age and household structure. PLoS ONE. 2018; 13 ( 7 ): 1 - 19. https://doi.org/10.1371/journal.pone.0199388
dc.identifier.citedreferenceLongini IM, Koopman JS, Monto AS, Fox JP. Estimating household and community transmission parameters for influenza. Am J Epidemiol. 1982; 115 ( 5 ): 736 - 751. https://doi.org/10.1093/oxfordjournals.aje.a113356
dc.identifier.citedreferenceWorby CJ, Chaves SS, Wallinga J, Lipsitch M, Finelli L, Goldstein E. On the relative role of different age groups in influenza epidemics. Epidemics. 2015; 13: 10 - 16. https://doi.org/10.1016/j.epidem.2015.04.003.On
dc.identifier.citedreferenceSchanzer D, Vachon J, Pelletier L. Age-specific differences in influenza a epidemic curves: do children drive the spread of influenza epidemics? Am J Epidemiol. 2011; 174 ( 1 ): 109 - 117. https://doi.org/10.1093/aje/kwr037
dc.identifier.citedreferenceRolfes MA, Foppa IM, Garg S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12 ( 1 ): 132 - 137. https://doi.org/10.1111/irv.12486
dc.identifier.citedreferenceEwing A, Lee EC, Viboud C, Bansal S. Contact, travel, and transmission: the impact of winter holidays on influenza dynamics in the United States. J Infect Dis. 2017; 215 ( 5 ): 732 - 739. https://doi.org/10.1093/infdis/jiw642
dc.identifier.citedreferenceThompson WW, Comanor L, Shay DK. Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease. J Infect Dis. 2006; 194 ( s2 ): S82 - S91. https://doi.org/10.1086/507558
dc.identifier.citedreferenceSchanzer DL, Langley JM, Dummer T, Viboud C, Tam TWS. A composite epidemic curve for seasonal influenza in Canada with an international comparison. Influenza Other Respi Viruses. 2010; 4 ( 5 ): 295 - 306. https://doi.org/10.1111/j.1750-2659.2010.00154.x
dc.identifier.citedreferenceCope RC, Ross JV, Chilver M, Stocks NP, Mitchell L. Characterising seasonal influenza epidemiology using primary care surveillance data. PLoS Comput Biol. 2018; 14 ( 8 ): 1 - 21. https://doi.org/10.1371/journal.pcbi.1006377
dc.identifier.citedreferencePaterson B, Caddis R, Durrheim D. Use of workplace absenteeism surveillance data for outbreak detection. Emerg Infect Dis. 2011; 65 ( 4 ): 633 - 640. https://doi.org/10.1017/S0043933909000440
dc.identifier.citedreferenceStockwell MS, Reed C, Vargas CY, et al. MoSAIC: mobile surveillance for acute respiratory infections and influenza-like illness in the community. Am J Epidemiol. 2014; 180 ( 12 ): 1196 - 1201. https://doi.org/10.1093/aje/kwu303
dc.identifier.citedreferenceLiu TY, Sanders JL, Tsui FC, Espino JU, Dato VM, Suyama J. Association of over-the-counter pharmaceutical sales with influenza-like-illnesses to patient volume in an urgent care setting. PLoS ONE. 2013; 8 ( 3 ): 1 - 7. https://doi.org/10.1371/journal.pone.0059273
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.