Show simple item record

MESSENGER Observations of Planetary Ion Enhancements at Mercury’s Northern Magnetospheric Cusp During Flux Transfer Event Showers

dc.contributor.authorSun, Weijie
dc.contributor.authorSlavin, James A.
dc.contributor.authorMilillo, Anna
dc.contributor.authorDewey, Ryan M.
dc.contributor.authorOrsini, Stefano
dc.contributor.authorJia, Xianzhe
dc.contributor.authorRaines, Jim M.
dc.contributor.authorLivi, Stefano
dc.contributor.authorJasinski, Jamie M.
dc.contributor.authorFu, Suiyan
dc.contributor.authorZhao, Jiutong
dc.contributor.authorZong, Qiu-Gang
dc.contributor.authorSaito, Yoshifumi
dc.contributor.authorLi, Changkun
dc.date.accessioned2022-05-06T17:28:25Z
dc.date.available2023-05-06 13:28:24en
dc.date.available2022-05-06T17:28:25Z
dc.date.issued2022-04
dc.identifier.citationSun, Weijie; Slavin, James A.; Milillo, Anna; Dewey, Ryan M.; Orsini, Stefano; Jia, Xianzhe; Raines, Jim M.; Livi, Stefano; Jasinski, Jamie M.; Fu, Suiyan; Zhao, Jiutong; Zong, Qiu-Gang ; Saito, Yoshifumi; Li, Changkun (2022). "MESSENGER Observations of Planetary Ion Enhancements at Mercury’s Northern Magnetospheric Cusp During Flux Transfer Event Showers." Journal of Geophysical Research: Space Physics 127(4): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/172313
dc.description.abstractAt Mercury, several processes can release ions and neutrals out of the planet’s surface. Here we present enhancements of planetary ions (Na+-group ions) in Mercury’s northern magnetospheric cusp during flux transfer event (FTE) “showers.” FTE showers are intervals of intense dayside magnetopause reconnection, during which FTEs are observed in quick succession, that is, only separated by a few seconds. This study identifies 1953 FTE shower intervals and 1795 Non-FTE shower intervals. During the shower intervals, this study shows that the FTEs form a solar wind entry layer equatorward of the northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e., planetward) toward the cusp, which sputter upward-moving planetary ions with a particle flux of 1 × 1011 m−2 s−1 within 1 min. The precipitation rate is estimated to increase by an order of magnitude during FTE showers, to 2 × 1025 s−1, and the neutral density of the exosphere could vary by >10% in response to this FTE-driven sputtering. Such rapid large-scale variations driven by dayside reconnection may explain the minute-to-minute changes in Mercury’s exosphere, especially on the high latitudes, observed by ground-based telescopes on Earth. Our MESSENGER in situ observation of enhanced planetary ions in the entry layer likely corresponds to an escape channel for Mercury’s planetary ions. Comprehensive, future multipoint measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury’s dynamic exosphere and magnetosphere.Plain Language SummaryFor the airless objects in the solar system, energetic ion sputtering is an important process that can release particles out of the planet’s surface. In Mercury’s magnetosphere, the solar wind energetic ions have been suggested to be able to release neutrals out of the surface in a short period by models and simulations. This paper has examined the 4 years of magnetic field and plasma measurements collected by NASA’s MESSENGER mission orbiting Mercury and has led to the discovery of how reconnection between the interplanetary and planetary magnetic fields leads to the formation of solar wind entry layers around Mercury’s magnetospheric cusps. These entry layers act as magnetic channels that cause the solar wind energetic ions to move downward toward the planet and precipitate onto the surface beneath Mercury’s northern and southern magnetospheric cusps where they sputter neutral sodium and sodium ions. This paper concludes that the solar wind sputtering could account for 10% or greater changes in the density of neutral sodium in Mercury’s exosphere, and the sputtered sodium ions likely form an escape channel of Mercury’s planetary species. The ion escape depended on the solar wind driving magnetopause reconnection at Mercury is different from the ion escape at Venus and Mars, where escape ions are ionized by the solar ultraviolet (UV).Key PointsSolar wind entry layer is observed to form equatorward of cusp during flux transfer event showers which enhances precipitation rate by an order of magnitudeSolar wind sputtering can release planetary ions and neutrals efficiently within 1 min of the onset of magnetopause reconnectionA new escape channel for planetary ions is formed by solar wind sputtering with an escape rate of ∼1024 s−1 for Na+-group ions
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplanetary ions enhancements
dc.subject.otherplanetary ion escape rate
dc.subject.otherMercury
dc.subject.othersolar wind-magnetosphere-surface coupling
dc.subject.othersolar wind sputtering
dc.titleMESSENGER Observations of Planetary Ion Enhancements at Mercury’s Northern Magnetospheric Cusp During Flux Transfer Event Showers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172313/1/jgra57128.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172313/2/jgra57128_am.pdf
dc.identifier.doi10.1029/2022JA030280
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSchmidt, C. A., Wilson, J. K., Baumgardner, J., & Mendillo, M. ( 2010 ). Orbital effects on Mercury’s escaping sodium exosphere. Icarus, 207 ( 1 ), 9 – 16. https://doi.org/10.1016/j.icarus.2009.10.017
dc.identifier.citedreferenceRussell, C. T. ( 1995 ). A study of flux transfer events at different planets. Advances in Space Research, 16 ( 4 ), 159 – 163. https://doi.org/10.1016/0273-1177(95)00224-3
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceRussell, C. T., & Walker, R. J. ( 1985 ). Flux transfer events at Mercury. Journal of Geophysical Research, 90 ( A11 ), 11067 – 11074. https://doi.org/10.1029/JA090ia11p11067
dc.identifier.citedreferenceSaito, Y., Delcourt, D., Hirahara, M., Barabash, S., André, N., Takashima, T., et al. ( 2021 ). Pre-flight calibration and near-Earth commissioning results of the Mercury plasma particle experiment (MPPE) onboard MMO (Mio). Space Science Reviews, 217 ( 5 ), 70. https://doi.org/10.1007/s11214-021-00839-2
dc.identifier.citedreferenceSaito, Y., Yokota, S., Asamura, K., Tanaka, T., Nishino, M. N., Yamamoto, T., et al. ( 2010 ). In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya). Space Science Reviews, 154 ( 1 ), 265 – 303. https://doi.org/10.1007/978-1-4419-8122-6_11
dc.identifier.citedreferenceSarantos, M., Slavin, J. A., Benna, M., Boardsen, S. A., Killen, R. M., Schriver, D., & Trávníček, P. ( 2009 ). Sodium-ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: Constraints on neutral exospheric models. Geophysical Research Letters, 36, L04106. https://doi.org/10.1029/2008GL036207
dc.identifier.citedreferenceSchillings, A., Slapak, R., Nilsson, H., Yamauchi, M., Dandouras, I., & Westerberg, L.-G. ( 2019 ). Earth atmospheric loss through the plasma mantle and its dependence on solar wind parameters. Earth Planets and Space, 71 ( 1 ), 70. https://doi.org/10.1186/s40623-019-1048-0
dc.identifier.citedreferenceSieveka, E. M., & Johnson, R. E. ( 1984 ). Ejection of atoms and molecules from Io by plasma-ion impact. The Astrophysical Journal, 287 ( 1 ), 418 – 426. https://doi.org/10.1086/162701
dc.identifier.citedreferenceSigmund, P. ( 1969 ). Theory of sputtering. I: Sputtering yield of amorphous and polycrystalline targets. Physical Review, 184 ( 2 ), 383 – 416. https://doi.org/10.1103/physrev.184.383
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on Mercury? Journal of Geophysical Research, 80 ( 31 ), 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceSlapak, R., Schillings, A., Nilsson, H., Yamauchi, M., & Westerberg, L.-G. ( 2018 ). Corrigendum to “atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: Implications for atmospheric escape on evolutionary timescales”. Annales Geophysicae, 35, 721 – 731.
dc.identifier.citedreferenceSlapak, R., Schillings, A., Nilsson, H., Yamauchi, M., Westerberg, L. G., & Dandouras, I. ( 2017 ). Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: Implications for atmospheric escape on evolutionary timescales. Annales Geophysicae, 35 ( 3 ), 721 – 731. https://doi.org/10.5194/angeo-35-721-2017
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., et al. ( 2008 ). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321 ( 5885 ), 85. https://doi.org/10.1126/science.1159040
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 11, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1979 ). The effect of erosion on the solar wind stand-off distance at Mercury. Journal of Geophysical Research, 84 ( A5 ), 2076 – 2082. https://doi.org/10.1029/JA084ia05p02076
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets. 1: Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11401 – 11418. https://doi.org/10.1029/JA086ia13p11401
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., et al. ( 2012 ). MESSENGER observations of a flux-transfer-event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W. J., et al. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1 ), 3 – 39. https://doi.org/10.1007/978-0-387-77214-1_1
dc.identifier.citedreferenceSprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Schneider, N. M., Domingue, D. L., Wells, W. K., et al. ( 1997 ). Distribution and abundance of sodium in Mercury’s atmosphere, 1985–1988. Icarus, 129 ( 2 ), 506 – 527. https://doi.org/10.1006/icar.1997.5784
dc.identifier.citedreferenceSun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., & Wei, Y. ( 2022 ). Review of Mercury’s dynamic magnetosphere: Post-MESSENGER Era and comparative magnetospheres. Science China Earth Sciences, 65, 25 – 74.
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., et al. ( 2020 ). MESSENGER observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection-generated structures and steady convection. Journal of Geophysical Research: Space Physics, 125, e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., et al. ( 2020 ). Flux transfer event showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the Dungey cycle. Geophysical Research Letters, 47, e2020GL089784. https://doi.org/10.1029/2020GL089784
dc.identifier.citedreferenceSzabo, P. S., Chiba, R., Biber, H., Stadlmayr, R., Berger, B. M., Mayer, D., et al. ( 2018 ). Solar wind sputtering of wollastonite as a lunar analogue material—Comparisons between experiments and simulations. Icarus, 314, 98 – 105. https://doi.org/10.1016/j.icarus.2018.05.028
dc.identifier.citedreferenceTanaka, T., Saito, Y., Yokota, S., Asamura, K., Nishino, M. N., Tsunakawa, H., et al. ( 2009 ). First in situ observation of the Moon-originating ions in the Earth’s Magnetosphere by MAP-PACE on SELENE (KAGUYA). Geophysical Research Letters, 36, L22106. https://doi.org/10.1029/2009GL040682
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903.
dc.identifier.citedreferenceWeider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., et al. ( 2015 ). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109 – 120. https://doi.org/10.1016/j.epsl.2015.01.023
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E., & Solomon, S. C. ( 2012 ). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophysical Research Letters, 39, L08112. https://doi.org/10.1029/2012GL051472
dc.identifier.citedreferenceWurz, P., Gamborino, D., Vorburger, A., & Raines, J. M. ( 2019 ). Heavy ion composition of Mercury’s magnetosphere. Journal of Geophysical Research: Space Physics, 124, 2603 – 2612. https://doi.org/10.1029/2018JA026319
dc.identifier.citedreferenceYakshinskiy, B. V., & Madey, T. E. ( 2000 ). Desorption induced by electronic transitions of Na from SiO 2: Relevance to tenuous planetary atmospheres. Surface Science, 451 ( 1 ), 160 – 165. https://doi.org/10.1016/s0039-6028(00)00022-4
dc.identifier.citedreferenceZhao, J. T., Zong, Q. G., Yue, C., Sun, W. J., Zhang, H., Zhou, X. Z., et al. ( 2022 ). Observational evidence of ring current in the magnetosphere of Mercury. Nature Communications, 13 ( 1 ), 924. https://doi.org/10.1038/s41467-022-28521-3
dc.identifier.citedreferenceZhou, H., Tóth, G., Jia, X., & Chen, Y. ( 2020 ). Reconnection-driven dynamics at Ganymede’s upstream magnetosphere: 3-D global Hall MHD and MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 125, e2020JA028162. https://doi.org/10.1029/2020JA028162
dc.identifier.citedreferenceZhou, H., Tóth, G., Jia, X., Chen, Y., & Markidis, S. ( 2019 ). Embedded kinetic simulation of Ganymede’s magnetosphere: Improvements and Inferences. Journal of Geophysical Research: Space Physics, 124, 5441 – 5460. https://doi.org/10.1029/2019JA026643
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., et al. ( 2012 ). Low-degree structure in Mercury’s planetary magnetic field. Journal of Geophysical Research, 117, E00L12. https://doi.org/10.1029/2012JE004159
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., et al. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1 ), 523 – 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceBarclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., et al. ( 2013 ). A sub-Mercury-sized exoplanet. Nature, 494 ( 7438 ), 452 – 454. https://doi.org/10.1038/nature11914
dc.identifier.citedreferenceBenninghoven, A. ( 1975 ). Developments in secondary ion mass spectroscopy and applications to surface studies. Surface Science, 53 ( 1 ), 596 – 625. https://doi.org/10.1016/0039-6028(75)90158-2
dc.identifier.citedreferenceBirn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., et al. ( 2001 ). Geospace environmental modeling (GEM) magnetic reconnection challenge. Journal of Geophysical Research, 106 ( A3 ), 3715 – 3719. https://doi.org/10.1029/1999JA900449
dc.identifier.citedreferenceBroadfoot, A. L., Kumar, S., Belton, M. J. S., & McElroy, M. B. ( 1974 ). Mercury’s atmosphere from Mariner 10: Preliminary results. Science, 185 ( 4146 ), 166 – 169. https://doi.org/10.1126/science.185.4146.166
dc.identifier.citedreferenceCassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E., & Vervack, R. J. ( 2015 ). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547 – 559. https://doi.org/10.1016/j.icarus.2014.10.037
dc.identifier.citedreferenceChen, Y., Tóth, G., Jia, X., Slavin, J. A., Sun, W., Markidis, S., et al. ( 2019 ). Studying dawn-dusk asymmetries of Mercury’s magnetotail using MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 124, 8954 – 8973. https://doi.org/10.1029/2019JA026840
dc.identifier.citedreferenceCravens, T. E., Kozyra, J. U., Nagy, A. F., Gombosi, T. I., & Kurtz, M. ( 1987 ). Electron impact ionization in the vicinity of comets. Journal of Geophysical Research, 92 ( A7 ), 7341 – 7353. https://doi.org/10.1029/JA092iA07p07341
dc.identifier.citedreferenceDelcourt, D. C., Seki, K., Terada, N., & Moore, T. E. ( 2012 ). Centrifugally stimulated exospheric ion escape at Mercury. Geophysical Research Letters, 39, L22105. https://doi.org/10.1029/2012GL054085
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., et al. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceDomingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., et al. ( 2014 ). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181 ( 1 ), 121 – 214. https://doi.org/10.1007/s11214-014-0039-5
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., & Vaisberg, O. ( 2011 ). Ion energization and escape on Mars and Venus. In K. Szego (Ed.), The plasma environment of Venus, Mars, and Titan (pp. 173 – 211 ). New York: Springer. https://doi.org/10.1007/978-1-4614-3290-6_6
dc.identifier.citedreferenceEgan, H., Jarvinen, R., Ma, Y., & Brain, D. ( 2019 ). Planetary magnetic field control of ion escape from weakly magnetized planets. Monthly Notices of the Royal Astronomical Society, 488 ( 2 ), 2108 – 2120. https://doi.org/10.1093/mnras/stz1819
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGlass, A. N., Raines, J. M., Jia, X., Tenishev, V., Shou, Y., Aizawa, S., & Slavin, J. A. ( 2021 ). A 3D MHD-particle tracing model of Na+ energization on Mercury’s dayside. Journal of Geophysical Research: Space Physics, 126, e2021JA029587. https://doi.org/10.1029/2021JA029587
dc.identifier.citedreferenceHofer, W. O. ( 1991 ). Angular, energy, and mass distribution of sputtered particles. In R. Behrisch, & K. Wittmaack (Eds.), Sputtering by particle bombardment III: Characteristics of sputtered particles, technical applications (pp. 15 – 90 ). Berlin: Springer. https://doi.org/10.1007/3540534288_16
dc.identifier.citedreferenceIp, W.-H. ( 1986 ). The sodium exosphere and magnetosphere of Mercury. Geophysical Research Letters, 13 ( 5 ), 423 – 426. https://doi.org/10.1029/GL013i005p00423
dc.identifier.citedreferenceIp, W.-H., Kopp, A., & Hu, J.-H. ( 2004 ). On the star-magnetosphere interaction of close-in exoplanets. The Astrophysical Journal, 602 ( 1 ), L53 – L56. https://doi.org/10.1086/382274
dc.identifier.citedreferenceJames, M. K., Imber, S. M., Bunce, E. J., Yeoman, T. K., Lockwood, M., Owens, M. J., & Slavin, J. A. ( 2017 ). Interplanetary magnetic field properties and variability near Mercury’s orbit. Journal of Geophysical Research: Space Physics, 122, 7907 – 7924. https://doi.org/10.1002/2017JA024435
dc.identifier.citedreferenceJasinski, J. M., Akhavan-Tafti, M., Sun, W., Slavin, J. A., Coates, A. J., Fuselier, S. A., et al. ( 2021 ). Flux transfer events at a reconnection-suppressed magnetopause: Cassini observations at Saturn. Journal of Geophysical Research: Space Physics, 126, e2020JA028786. https://doi.org/10.1029/2020JA028786
dc.identifier.citedreferenceJasinski, J. M., Cassidy, T. A., Raines, J. M., Milillo, A., Regoli, L. H., Dewey, R., et al. ( 2021 ). Photoionization loss of Mercury’s sodium exosphere: Seasonal observations by MESSENGER and the THEMIS telescope. Geophysical Research Letters, 48, e2021GL092980. https://doi.org/10.1029/2021GL092980
dc.identifier.citedreferenceJasinski, J. M., Regoli, L. H., Cassidy, T. A., Dewey, R. M., Raines, J. M., Slavin, J. A., et al. ( 2020 ). A transient enhancement of Mercury’s exosphere at extremely high altitudes inferred from pickup ions. Nature Communications, 11 ( 1 ), 4350. https://doi.org/10.1038/s41467-020-18220-2
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122, 12153 – 112169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., et al. ( 2019 ). MESSENGER observations and global simulations of highly Compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceJohnson, R. E., & Baragiola, R. ( 1991 ). Lunar surface: Sputtering and secondary ion mass spectrometry. Geophysical Research Letters, 18 ( 11 ), 2169 – 2172. https://doi.org/10.1029/91GL02095
dc.identifier.citedreferenceKillen, R., Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague, A. L., et al. ( 2007 ). Processes that promote and deplete the exosphere of Mercury. Space Science Reviews, 132 ( 2 ), 433 – 509. https://doi.org/10.1007/s11214-007-9232-0
dc.identifier.citedreferenceKillen, R. M., Potter, A. E., Reiff, P., Sarantos, M., Jackson, B. V., Hick, P., & Giles, B. ( 2001 ). Evidence for space weather at Mercury. Journal of Geophysical Research, 106 ( E9 ), 20509 – 20525. https://doi.org/10.1029/2000JE001401
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., et al. ( 1996 ). Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384 ( 6609 ), 537 – 541. https://doi.org/10.1038/384537a0
dc.identifier.citedreferenceLammer, H., Wurz, P., Patel, M. R., Killen, R., Kolb, C., Massetti, S., et al. ( 2003 ). The variability of Mercury’s exosphere by particle and radiation induced surface release processes. Icarus, 166 ( 2 ), 238 – 247. https://doi.org/10.1016/j.icarus.2003.08.012
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the Earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 – 108. https://doi.org/10.1029/GL012i002p00105
dc.identifier.citedreferenceLotz, W. ( 1967 ). An empirical formula for the electron-impact ionization cross-section. Zeitschrift für Physik, 206 ( 2 ), 205 – 211. https://doi.org/10.1007/BF01325928
dc.identifier.citedreferenceLundin, R., Barabash, S., Holmström, M., Nilsson, H., Futaana, Y., Ramstad, R., et al. ( 2013 ). Solar cycle effects on the ion escape from Mars. Geophysical Research Letters, 40, 6028 – 6032. https://doi.org/10.1002/2013GL058154
dc.identifier.citedreferenceMadey, T. E., Yakshinskiy, B. V., Ageev, V. N., & Johnson, R. E. ( 1998 ). Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon. Journal of Geophysical Research, 103 ( E3 ), 5873 – 5887. https://doi.org/10.1029/98JE00230
dc.identifier.citedreferenceMangano, V., Milillo, A., Mura, A., Orsini, S., De Angelis, E., Di Lellis, A. M., & Wurz, P. ( 2007 ). The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planetary and Space Science, 55 ( 11 ), 1541 – 1556. https://doi.org/10.1016/j.pss.2006.10.008
dc.identifier.citedreferenceMassetti, S., Mangano, V., Milillo, A., Mura, A., Orsini, S., & Plainaki, C. ( 2017 ). Short-term observations of double-peaked Na emission from Mercury’s exosphere. Geophysical Research Letters, 44, 2970 – 2977. https://doi.org/10.1002/2017GL073090
dc.identifier.citedreferenceMcComas, D. J., Spence, H. E., Russell, C. T., & Saunders, M. A. ( 1986 ). The average magnetic field draping and consistent plasma properties of the Venus magnetotail. Journal of Geophysical Research, 91 ( A7 ), 7939 – 7953. https://doi.org/10.1029/JA091ia07p07939
dc.identifier.citedreferenceMcCoy, T. J., Peplowski, P. N., McCubbin, F. M., & Weider, S. Z. ( 2018 ). The geochemical and mineralogical diversity of Mercury. In L. R. N. Sean, C. Solomon, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (pp. 176 – 190 ). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316650684.008
dc.identifier.citedreferenceMcGrath, M. A., Johnson, R. E., & Lanzerotti, L. J. ( 1986 ). Sputtering of sodium on the planet Mercury. Nature, 323 ( 6090 ), 694 – 696. https://doi.org/10.1038/323694a0
dc.identifier.citedreferenceMcLain, J. L., Sprague, A. L., Grieves, G. A., Schriver, D., Travinicek, P., & Orlando, T. M. ( 2011 ). Electron-stimulated desorption of silicates: A potential source for ions in Mercury’s space environment. Journal of Geophysical Research, 116, E03007. https://doi.org/10.1029/2010JE003714
dc.identifier.citedreferenceMilillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews, 216 ( 5 ), 93. https://doi.org/10.1007/s11214-020-00712-8
dc.identifier.citedreferenceMorgan, T. H., Zook, H. A., & Potter, A. E. ( 1988 ). Impact-driven supply of sodium and potassium to the atmosphere of Mercury. Icarus, 75 ( 1 ), 156 – 170. https://doi.org/10.1016/0019-1035(88)90134-0
dc.identifier.citedreferenceMura, A., Milillo, A., Orsini, S., & Massetti, S. ( 2007 ). Numerical and analytical model of Mercury’s exosphere: Dependence on surface and external conditions. Planetary and Space Science, 55 ( 11 ), 1569 – 1583. https://doi.org/10.1016/j.pss.2006.11.028
dc.identifier.citedreferenceMura, A., Orsini, S., Milillo, A., Delcourt, D., Massetti, S., & De Angelis, E. ( 2005 ). Dayside H+ circulation at Mercury and neutral particle emission. Icarus, 175 ( 2 ), 305 – 319. https://doi.org/10.1016/j.icarus.2004.12.010
dc.identifier.citedreferenceOrsini, S., Livi, S. A., Lichtenegger, H., Barabash, S., Milillo, A., De Angelis, E., et al. ( 2021 ). Serena: Particle instrument suite for determining the Sun-Mercury interaction from BepiColombo. Space Science Reviews, 217 ( 1 ), 11. https://doi.org/10.1007/s11214-021-00809-8
dc.identifier.citedreferenceOrsini, S., Mangano, V., Milillo, A., Plainaki, C., Mura, A., Raines, J. M., et al. ( 2018 ). Mercury sodium exospheric emission as a proxy for solar perturbations transit. Scientific Reports, 8 ( 1 ), 928. https://doi.org/10.1038/s41598-018-19163-x
dc.identifier.citedreferencePeplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., et al. ( 2014 ). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 86 – 95. https://doi.org/10.1016/j.icarus.2013.09.007
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., Imber, S. M., et al. ( 2016 ). MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 121, 8260 – 8285. https://doi.org/10.1002/2016JA022552
dc.identifier.citedreferencePokorný, P., Sarantos, M., & Janches, D. ( 2018 ). A comprehensive model of the meteoroid environment around Mercury. The Astrophysical Journal, 863 ( 1 ), 31.
dc.identifier.citedreferencePotter, A. E., & Morgan, T. ( 1985 ). Discovery of sodium in the atmosphere of Mercury. Science, 229 ( 4714 ), 651. https://doi.org/10.1126/science.229.4714.651
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 – 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., et al. ( 2013 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 1604 – 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., et al. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59 ( 15 ), 2004 – 2015. https://doi.org/10.1016/j.pss.2011.02.004
dc.identifier.citedreferenceRamstad, R., & Barabash, S. ( 2021 ). Do intrinsic magnetic fields protect planetary atmospheres from stellar winds? Space Science Reviews, 217 ( 2 ), 36. https://doi.org/10.1007/s11214-021-00791-1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.