Show simple item record

Drainage rearrangements and in situ diversification of an endemic freshwater fish genus from north-eastern Brazilian rivers

dc.contributor.authorBarreto, Silvia Britto
dc.contributor.authorKnowles, L. Lacey
dc.contributor.authorMascarenhas, Rilquer
dc.contributor.authorAffonso, Paulo Roberto Antunes de Mello
dc.contributor.authorBatalha-Filho, Henrique
dc.date.accessioned2022-05-06T17:28:33Z
dc.date.available2023-06-06 13:28:31en
dc.date.available2022-05-06T17:28:33Z
dc.date.issued2022-05
dc.identifier.citationBarreto, Silvia Britto; Knowles, L. Lacey; Mascarenhas, Rilquer; Affonso, Paulo Roberto Antunes de Mello; Batalha-Filho, Henrique (2022). "Drainage rearrangements and in situ diversification of an endemic freshwater fish genus from north- eastern Brazilian rivers." Freshwater Biology (5): 759-773.
dc.identifier.issn0046-5070
dc.identifier.issn1365-2427
dc.identifier.urihttps://hdl.handle.net/2027.42/172316
dc.description.abstractDrainage rearrangements, either headwater captures or coastal paleodrainages formed when sea level was low, are often invoked to explain connectivity and isolation among fish populations. Unravelling these events is crucial for understanding the evolutionary processes that have shaped the genetic diversity and differentiation in freshwater fishes, which is especially relevant in regions with high endemism and species richness.Here, we analyse mitochondrial (cytochrome c oxidase subunit I) and genomic (restriction site-associated DNA) data to test the putative effects of the current configuration of basins and historical drainage rearrangements on the genetic structuring of a characid fish (Nematocharax) endemic to a largely overlooked Neotropical freshwater ecoregion—the North-eastern Mata Atlantica. Bathymetric and geomorphological data were also used to generate hypotheses for two potential routes of dispersal (headwater captures and coastal paleodrainages).We found that the divergence between lineages from the highlands of the Brazilian shield and the lowlands occurred during the Mio-Pliocene (i.e., divergence between Nematocharax varii and Nematocharax venustus), followed by divergence events within N. venustus in lowland basins during the Pleistocene. The general distribution of genetic variation in N. venustus seems to reflect the current configuration of basins, suggesting long-term isolation, but a subset of the inferred drainage rearrangements have facilitated movement among these catchments, which is supported by both mitochondrial DNA and genomic data.Our results suggest that the North-eastern Mata Atlantica river basins have had their own independent histories, except for some past temporary connections that allowed dispersal events and multiple independent colonisation of basins, as seen in the Contas and Cachoeira river systems.Estimating when and where connections between river basins may have occurred is fundamental to understand the role of different historical processes structuring divergence in freshwater fish species.
dc.publisherWiley-Blackwell
dc.subject.otherNeotropical fish
dc.subject.otherpaleodrainages
dc.subject.othergenetic structure
dc.subject.otherheadwater captures
dc.subject.othercoastal basins
dc.titleDrainage rearrangements and in situ diversification of an endemic freshwater fish genus from north-eastern Brazilian rivers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172316/1/fwb13879.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172316/2/fwb13879_am.pdf
dc.identifier.doi10.1111/fwb.13879
dc.identifier.sourceFreshwater Biology
dc.identifier.citedreferenceRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. ( 2012 ). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 ( 3 ), 539 – 542. https://doi.org/10.1093/sysbio/sys029
dc.identifier.citedreferenceRodrigues, A. D. S., Brandão, J. H. S. G., Bitencourt, J. A., Jucá-Chagas, R., Sampaio, I., Schneider, H., & Affonso, P. R. A. M. ( 2016 ). Molecular identification and traceability of illegal trading in Lignobrycon myersi (Teleostei: Characiformes), a threatened Brazilian fish species, using DNA barcode. The Scientific World Journal, 2016, 9382613. https://doi.org/10.1155/2016/9382613
dc.identifier.citedreferenceRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. ( 2017 ). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34 ( 12 ), 3299 – 3302. https://doi.org/10.1093/molbev/msx248
dc.identifier.citedreferenceSaadi, A. ( 1995 ). A geomorfologia da Serra do Espinhaço em Minas Gerais e de suas margens. Geonomos, 3 ( 1 ), 41 – 63. https://doi.org/10.18285/geonomos.v3i1.215
dc.identifier.citedreferenceSaadi, A., Machette, M. N., Haller, K. M., Dart, R. L., Bradley, L., & Souza, A. M. P. D. ( 2002 ). Map and database of Quaternary faults and lineaments in Brazil. U.S. Geological Survey Open-File Report 02-230. Version 1.0. http://pubs.usgs.gov/of/2002/ofr-02-230/
dc.identifier.citedreferenceSchwarzer, J., Swartz, E. R., Vreven, E., Snoeks, J., Cotterill, F. P. D., Misof, B., & Schliewen, U. K. ( 2012 ). Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proceedings of the Royal Society B: Biological Sciences, 279 ( 1746 ), 4389 – 4398. https://doi.org/10.1098/rspb.2012.1667
dc.identifier.citedreferenceShelley, J. J., Swearer, S. E., Dempster, T., Adams, M., Le Feuvre, M. C., Hammer, M. P., & Unmack, P. J. ( 2020 ). Plio-Pleistocene sea-level changes drive speciation of freshwater fishes in north-western Australia. Journal of Biogeography, 47 ( 8 ), 1727 – 1738. https://doi.org/10.1111/jbi.13856
dc.identifier.citedreferenceSouza, M. S., Thomaz, A. T., & Fagundes, N. J. ( 2020 ). River capture or ancestral polymorphism: An empirical genetic test in a freshwater fish using approximate Bayesian computation. Biological Journal of the Linnean Society, 131 ( 3 ), 575 – 584. https://doi.org/10.1093/biolinnean/blaa140
dc.identifier.citedreferenceStamatakis, A. ( 2014 ). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 ( 9 ), 1312 – 1313. https://doi.org/10.1093/bioinformatics/btu033
dc.identifier.citedreferenceSwofford, D. L. ( 2003 ). PAUP*: Phylogenetic analysis using parsimony and other methods, version 4.0 b10. Sinauer Associates.
dc.identifier.citedreferenceTajima, F. ( 1989 ). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123 ( 3 ), 585 – 595. https://doi.org/10.1093/genetics/123.3.585
dc.identifier.citedreferenceThomaz, A. T., Christie, M. R., & Knowles, L. L. ( 2016 ). The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70 ( 3 ), 731 – 739. https://doi.org/10.1111/evo.12883
dc.identifier.citedreferenceThomaz, A. T., & Knowles, L. L. ( 2018 ). Flowing into the unknown: Inferred paleodrainages for studying the ichthyofauna of Brazilian coastal rivers. Neotropical Ichthyology, 16 ( 3 ), e180019. https://doi.org/10.1590/1982-0224-20180019
dc.identifier.citedreferenceThomaz, A. T., & Knowles, L. L. ( 2020 ). Common barriers, but temporal dissonance: Genomic tests suggest ecological and paleo-landscape sieves structure a coastal riverine fish community. Molecular Ecology, 29 ( 4 ), 783 – 796. https://doi.org/10.1111/mec.15357
dc.identifier.citedreferenceThomaz, A. T., Malabarba, L. R., & Bonatto, S. L. ( 2010 ). The phylogenetic placement of Hollandichthys Eigenmann 1909 (Teleostei: Characidae) and related genera. Molecular Phylogenetics and Evolution, 57 ( 3 ), 1347 – 1352. https://doi.org/10.1016/j.ympev.2010.10.006
dc.identifier.citedreferenceThomaz, A. T., Malabarba, L. R., Bonatto, S. L., & Knowles, L. L. ( 2015 ). Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: Study of a Neotropical fish of the Brazilian coastal Atlantic Forest. Journal of Biogeography, 42 ( 12 ), 2389 – 2401. https://doi.org/10.1111/jbi.12597
dc.identifier.citedreferenceThomaz, A. T., Malabarba, L. R., & Knowles, L. L. ( 2017 ). Genomic signatures of paleodrainages in a freshwater fish along the southeastern coast of Brazil: Genetic structure reflects past riverine properties. Heredity, 119 ( 4 ), 287 – 294. https://doi.org/10.1038/hdy.2017.46
dc.identifier.citedreferenceThompson, J. D., Higgins, D. G., & Gibson, T. J. ( 1994 ). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22 ( 22 ), 4673 – 4680. https://doi.org/10.1093/nar/22.22.4673
dc.identifier.citedreferenceToonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R., & Bird, C. E. ( 2013 ). ezRAD: A simplified method for genomic genotyping in non-model organisms. PeerJ, 1, e203. https://doi.org/10.7717/peerj.203
dc.identifier.citedreferenceTschá, M. K., Baggio, R. A., Marteleto, F. M., Abilhoa, V., Bachmann, L., & Boeger, W. A. ( 2017 ). Sea-level variations have influenced the demographic history of estuarine and freshwater fishes of the coastal plain of Paraná, Brazil. Journal of Fish Biology, 90 ( 3 ), 968 – 979. https://doi.org/10.1111/jfb.13211
dc.identifier.citedreferenceWard, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. ( 2005 ). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 ( 1462 ), 1847 – 1857. https://doi.org/10.1098/rstb.2005.1716
dc.identifier.citedreferenceWaters, J. M., Burridge, C. P., & Craw, D. ( 2020 ). River capture and freshwater biological evolution: A review of galaxiid fish vicariance. Diversity, 12 ( 6 ), 216. https://doi.org/10.3390/d12060216
dc.identifier.citedreferenceWeitzman, S. H., Menezes, N. A., & Weitzman, M. J. ( 1988 ). Phylogenetic biogeography of the Glandulocaudini (Teleostei: Characiformes, Characidae) with comments on the distributions of other freshwater fishes in eastern and southeastern Brazil. In P. E. Vanzolini, & W. R. Heyer (Eds.), Proceedings of workshop on neotropical distribution patterns. Academia Brasileira de Ciências.
dc.identifier.citedreferenceWilzbach, M. A., & Cummins, K. W. ( 2008 ). Rivers and streams: Physical setting and adapted biota. In S. E. Jørgensen, & B. D. Fath (Eds.), Encyclopedia of ecology. Elsevier.
dc.identifier.citedreferenceWinemiller, K. O., & Willis, S. C. ( 2011 ). The Vaupes Arch and Casiquiare Canal: Barriers and passages. Chapter 14. In J. S. Albert, & R. E. Reis (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press.
dc.identifier.citedreferenceCamelier, P., & Zanata, A. M. ( 2014 ). Biogeography of freshwater fishes from the Northeastern Mata Atl-ntica freshwater ecoregion: Distribution, endemism, and area relationships. Neotropical Ichthyology, 12 ( 4 ), 683 – 698. https://doi.org/10.1590/1982-0224-20130228
dc.identifier.citedreferenceAbell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/B580507
dc.identifier.citedreferenceAlbert, J. S., Craig, J. M., Tagliacollo, V. A., & Petry, P. ( 2018 ). Upland and lowland fishes: a test of the river capture hypothesis. Chapter 19. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 273 – 294 ). Wiley-Blackwell.
dc.identifier.citedreferenceAlbert, J. S., Petry, P., & Reis, R. E. ( 2011 ). Major biogeographic and phylogenetic patterns. Chapter 2. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of Neotropical freshwater fishes (pp. 21 – 57 ). University of California Press.
dc.identifier.citedreferenceAlbert, J. S., & Reis, R. E. ( 2011 ). Historical biogeography of Neotropical freshwater fishes. University of California Press.
dc.identifier.citedreferenceArgolo, L. A., López-Fernández, H., Batalha-Filho, H., & Affonso, P. R. A. M. ( 2020 ). Unraveling the systematics and evolution of the ‘ Geophagus ’ brasiliensis (Cichliformes: Cichlidae) species complex. Molecular Phylogenetics and Evolution, 150, 106855. https://doi.org/10.1016/j.ympev.2020.106855
dc.identifier.citedreferenceBaggio, R. A., Stoiev, S. B., Spach, H. L., & Boeger, W. A. ( 2017 ). Opportunity and taxon pulse: The central influence of coastal geomorphology on genetic diversification and endemism of strict estuarine species. Journal of Biogeography, 44 ( 7 ), 1626 – 1639. https://doi.org/10.1111/jbi.12934
dc.identifier.citedreferenceBarreto, S. B., Cioffi, M. B., Medrado, A. S., Silva, A. T., Affonso, P. R. A. M., & Diniz, D. ( 2016 ). Allopatric chromosomal variation in Nematocharax venustus Weitzman, Menezes & Britski, 1986 (Actinopterygii: Characiformes) based on mapping of repetitive sequences. Neotropical Ichthyology, 14 ( 2 ), e150141. https://doi.org/10.1590/1982-0224-20150141
dc.identifier.citedreferenceBarreto, S. B., Knowles, L. L., Affonso, P. R. A. M., & Batalha-Filho, H. ( 2020 ). Riverscape properties contribute to the origin and structure of a hybrid zone in a Neotropical freshwater fish. Journal of Evolutionary Biology, 33 ( 11 ), 1530 – 1542. https://doi.org/10.1111/jeb.13689
dc.identifier.citedreferenceBarreto, S. B., Nunes, L. A., Silva, A. T., Jucá-Chagas, R., Diniz, D., Sampaio, I., … Affonso, P. R. A. M. ( 2016 ). Is Nematocharax (Actinopterygii, Characiformes) a monotypic fish genus? Genome, 59 ( 10 ), 851 – 865. https://doi.org/10.1139/gen-2015-0166
dc.identifier.citedreferenceBarreto, S. B., Silva, A. T., Batalha-Filho, H., Affonso, P. R. A. M., & Zanata, A. M. ( 2018 ). Integrative approach reveals a new species of Nematocharax (Teleostei: Characidae). Journal of Fish Biology, 93 ( 6 ), 1151 – 1162. https://doi.org/10.1111/jfb.13834
dc.identifier.citedreferenceBishop, P. ( 1995 ). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19 ( 4 ), 449 – 473. https://doi.org/10.1177/030913339501900402
dc.identifier.citedreferenceBuckup, P. A. ( 2011 ). The Eastern Brazilian Shield. Chapter 12. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press.
dc.identifier.citedreferenceBurridge, C. P., Craw, D., Jack, D. C., King, T. M., & Waters, J. M. ( 2008 ). Does fish ecology predict dispersal across a river drainage divide? Evolution, 62 ( 6 ), 1484 – 1499. https://doi.org/10.1111/j.1558-5646.2008.00377.x
dc.identifier.citedreferenceBurridge, C. P., Craw, D., & Waters, J. M. ( 2006 ). River capture, range expansion, and cladogenesis: The genetic signature of freshwater vicariance. Evolution, 60 ( 5 ), 1038 – 1049. https://doi.org/10.1111/j.0014-3820.2006.tb01181.x
dc.identifier.citedreferenceCamelier, P., Menezes, N. A., Costa-Silva, G. J., & Oliveira, C. ( 2018 ). Molecular and morphological data of the freshwater fish Glandulocauda melanopleura (Characiformes: Characidae) provide evidences of river captures and local differentiation in the Brazilian Atlantic Forest. PLoS One, 13 ( 3 ), e0194247. https://doi.org/10.1371/journal.pone.0194247
dc.identifier.citedreferenceCampbell Grant, E. H., Lowe, W. H., & Fagan, W. F. ( 2007 ). Living in the branches: Population dynamics and ecological processes in dendritic networks. Ecology Letters, 10 ( 2 ), 165 – 175. https://doi.org/10.1111/j.1461-0248.2006.01007.x
dc.identifier.citedreferenceCarstens, B. C., & Knowles, L. L. ( 2007 ). Shifting distributions and speciation: Species divergence during rapid climate change. Molecular Ecology, 16 ( 3 ), 619 – 627. https://doi.org/10.1111/j.1365-294X.2006.03167.x
dc.identifier.citedreferenceCarvajal-Quintero, J., Villalobos, F., Oberdorff, T., Grenouillet, G., Brosse, S., Hugueny, B., … Tedesco, P. A. ( 2019 ). Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size. Proceedings of the National Academy of Sciences, 116 ( 27 ), 13434 – 13439. https://doi.org/10.1073/pnas.1902484116
dc.identifier.citedreferenceCetra, M., Ferreira, F. C., & Carmassi, A. L. ( 2009 ). Caracterização das assembléias de peixes de riachos de cabeceira no período chuvoso na bacia do rio Cachoeira (SE da Bahia, NE do Brasil). Biota Neotropica, 9 ( 2 ), 107 – 115. https://doi.org/10.1590/S1676-06032009000200010
dc.identifier.citedreferenceChifman, J., & Kubatko, L. ( 2014 ). Quartet inference from SNP data under the coalescent model. Bioinformatics, 30 ( 23 ), 3317 – 3324. https://doi.org/10.1093/bioinformatics/btu530
dc.identifier.citedreferenceClark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., … McCabe, A. M. ( 2009 ). The last glacial maximum. Science, 325 ( 5941 ), 710 – 714. https://doi.org/10.1126/science.1172873
dc.identifier.citedreferenceCorander, J., & Marttinen, P. ( 2006 ). Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology, 15 ( 10 ), 2833 – 2843. https://doi.org/10.1111/j.1365-294X.2006.02994.x
dc.identifier.citedreferenceDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. ( 2012 ). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9 ( 8 ), 772. https://doi.org/10.1038/nmeth.2109
dc.identifier.citedreferenceDavis, C. D., Epps, C. W., Flitcroft, R. L., & Banks, M. A. ( 2018 ). Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdisciplinary Reviews: Water, 5 ( 2 ), e1269. https://doi.org/10.1002/wat2.1269
dc.identifier.citedreferencede Oliveira, D. ( 2010 ). Capturas fluviais como evidências da evolução do relevo: Uma revisão bibliográfica. Revista do Departamento De Geografia, 20, 37 – 50. https://doi.org/10.7154/RDG.2010.0020.0003
dc.identifier.citedreferencede Sousa, J. L. P., Bitencourt, J. A., Sampaio, I., Schneider, H., & Affonso, P. R. A. M. ( 2021 ). “More than meets the eye”: Phylogeographic inferences and remarkable cryptic diversity and in endemic catfish Parotocinclus (Loricariidae: Hypoptopomatinae) from neglected and impacted basins in South America. Conservation Genetics, 22, 411 – 425. https://doi.org/10.1007/s10592-021-01336-3
dc.identifier.citedreferenceDel Fabbro, C., Scalabrin, S., Morgante, M., & Giorgi, F. M. ( 2013 ). An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One, 8 ( 12 ), e85024. https://doi.org/10.1371/journal.pone.0085024
dc.identifier.citedreferenceDias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.-F., … Tedesco, P. A. ( 2014 ). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17 ( 9 ), 1130 – 1140. https://doi.org/10.1111/ele.12319
dc.identifier.citedreferenceDiretoria de Geociências (IBGE/DGC) ( 2016 ). Falhas Geológicas da Folha SD.24 – Salvador. http://dados.gov.br/dataset/cren_geologiafalhasd24
dc.identifier.citedreferenceDiretoria de Geociências (IBGE/DGC). ( 2017 ). BC250 – Base cartográfica contínua do Brasil – 1:250 000. http://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc250/versao2017
dc.identifier.citedreferenceDrummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. ( 2012 ). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29 ( 8 ), 1969 – 1973. https://doi.org/10.1093/molbev/mss075
dc.identifier.citedreferenceEaton, D. A. R. ( 2014 ). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30 ( 13 ), 1844 – 1849. https://doi.org/10.1093/bioinformatics/btu121
dc.identifier.citedreferenceEdwards, S. V., & Beerli, P. ( 2000 ). Perspective: Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54 ( 6 ), 1839 – 1854. https://doi.org/10.1111/j.0014-3820.2000.tb01231.x
dc.identifier.citedreferenceExcoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. ( 2013 ). Robust demographic inference from genomic and SNP data. PLOS Genetics, 9 ( 10 ), e1003905. https://doi.org/10.1371/journal.pgen.1003905
dc.identifier.citedreferenceExcoffier, L., & Foll, M. ( 2011 ). Fastsimcoal: A continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics, 27 ( 9 ), 1332 – 1334. https://doi.org/10.1093/bioinformatics/btr124
dc.identifier.citedreferenceFrichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. ( 2014 ). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196 ( 4 ), 973 – 983. https://doi.org/10.1534/genetics.113.160572
dc.identifier.citedreferenceFu, Y. X. ( 1997 ). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147 ( 2 ), 915 – 925. https://doi.org/10.1093/genetics/147.2.915
dc.identifier.citedreferenceHales, J., & Petry, P. ( 2015 ). Northeastern Mata Atlantica ecoregion. http://www.feow.org/ecoregions/details/328
dc.identifier.citedreferenceHughes, J. M., Schmidt, D. J., & Finn, D. S. ( 2009 ). Genes in streams: Using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience, 59 ( 7 ), 573 – 583. https://doi.org/10.1525/bio.2009.59.7.8
dc.identifier.citedreferenceJarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. ( 2008 ). Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org
dc.identifier.citedreferenceKnapp, I. S. S., Puritz, J., Bird, C., Whitney, J., Sudek, M., Forsman, Z., & Toonen, R. ( 2016 ). ezRAD – an accessible next-generation RAD sequencing protocol suitable for non-model organisms_v3.2. https://doi.org/10.17504/protocols.io.e9pbh5n
dc.identifier.citedreferenceLima, S. M., Berbel-Filho, W. M., Araújo, T. F., Lazzarotto, H., Tatarenkov, A., & Avise, J. C. ( 2017 ). Headwater capture evidenced by paleo-rivers reconstruction and population genetic structure of the armored catfish ( Pareiorhaphis garbei ) in the Serra do Mar mountains of southeastern Brazil. Frontiers in Genetics, 8, 199. https://doi.org/10.3389/fgene.2017.00199
dc.identifier.citedreferenceLima, S. M. Q., Berbel-Filho, W. M., Vilasboa, A., Lazoski, C., Assis Volpi, T., Lazzarotto, H., … Solé-Cava, A. M. ( 2021 ). Rio de Janeiro and other palaeodrainages evidenced by the genetic structure of an Atlantic Forest catfish. Journal of Biogeography, 48 ( 6 ), 1475 – 1488. https://doi.org/10.1111/jbi.14091
dc.identifier.citedreferenceLucas, M., & Baras, E. ( 2001 ). Migration of freshwater fishes. Blackwell Science Ltd.
dc.identifier.citedreferenceLynch, M. ( 2010 ). Evolution of the mutation rate. Trends in Genetics, 26 ( 8 ), 345 – 352. https://doi.org/10.1016/j.tig.2010.05.003
dc.identifier.citedreferenceMartins, L. R., & Coutinho, P. N. ( 1981 ). The Brazilian continental margin. Earth-Science Reviews, 17 ( 1–2 ), 87 – 107. https://doi.org/10.1016/0012-8252(81)90007-6
dc.identifier.citedreferenceMenezes, N. A., & Lima, F. C. T. ( 2008 ). Nematocharax venustus Weitzman, Menezes & Britski, 1986. In A. B. M. Machado, G. M. Drummond, & A. P. Paglia (Eds.), Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. MMA, Brasília.
dc.identifier.citedreferenceMenezes, N. A., Weitzman, S. H., Oyakawa, O. T., Lima, F. C. T. D., Correa e Castro, R. M., & Weitzman, M. J. ( 2017 ). Peixes de água doce da Mata Atl-ntica: Lista preliminar das espécies e comentários sobre conservação de peixes de água doce neotropicais. Museu de Zoologia da Universidade de São Paulo.
dc.identifier.citedreferenceMenezes, N. A., Zanata, A. M., & Camelier, P. ( 2015 ). Nematocharax costai Bragança, Barbosa & Mattos a junior synonym of Nematocharax venustus Weitzman, Menezes & Britski (Teleostei: Characiformes: Characidae). Zootaxa, 3920 ( 3 ), 453 – 462. https://doi.org/10.11646/zootaxa.3920.3.4
dc.identifier.citedreferenceMiller, M. A., Pfeiffer, W., & Schwartz, T. ( 2010 ). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop. GCE, New Orleans
dc.identifier.citedreferenceNogueira, C., Buckup, P. A., Menezes, N. A., Oyakawa, O. T., Kasecker, T. P., Neto, M. B. R., & da Silva, J. M. C. ( 2010 ). Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS One, 5 ( 6 ), e11390. https://doi.org/10.1371/journal.pone.0011390
dc.identifier.citedreferenceOliveira, C., Avelino, G. S., Abe, K. T., Mariguela, T. C., Benine, R. C., Ortí, G., … Corrêa e Castro, R. M. ( 2011 ). Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionary Biology, 11, 275. https://doi.org/10.1186/1471-2148-11-275
dc.identifier.citedreferenceOllier, C., & Pain, C. ( 2000 ). The origin of mountains. Routledge.
dc.identifier.citedreferenceQGIS Development Team. ( 2019 ). QGIS geographic information system, open source geospatial foundation. http://qgis.osgeo.org
dc.identifier.citedreferenceRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. ( 2018 ). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 ( 5 ), 901 – 904. https://doi.org/10.1093/sysbio/syy032
dc.identifier.citedreferenceRannala, B., Edwards, S. V., Leaché, A., & Yang, Z. ( 2020 ). The Multispecies Coalescent Model and Species Tree Inference. Chapter 3.3. In C. Scornavacca, F. Delsuc, & N. Galtier (Eds.), Phylogenetics in the genomic era. No commercial publisher, Authors open access book. https://hal.inria.fr/PGE
dc.identifier.citedreferenceRibeiro, A. C. ( 2006 ). Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: An example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, 4 ( 2 ), 225 – 246. https://doi.org/10.1590/S1679-62252006000200009
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.