Show simple item record

Altered Cholinergic Innervation in De Novo Parkinson’s Disease with and Without Cognitive Impairment

dc.contributor.authorZee, Sygrid
dc.contributor.authorKanel, Prabesh
dc.contributor.authorGerritsen, Marleen J.J.
dc.contributor.authorBoertien, Jeffrey M.
dc.contributor.authorSlomp, Anne C.
dc.contributor.authorMüller, Martijn L.t.m.
dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorSpikman, Jacoba M.
dc.contributor.authorLaar, Teus
dc.date.accessioned2022-05-06T17:29:07Z
dc.date.available2023-05-06 13:29:05en
dc.date.available2022-05-06T17:29:07Z
dc.date.issued2022-04
dc.identifier.citationZee, Sygrid; Kanel, Prabesh; Gerritsen, Marleen J.J.; Boertien, Jeffrey M.; Slomp, Anne C.; Müller, Martijn L.t.m. ; Bohnen, Nicolaas I.; Spikman, Jacoba M.; Laar, Teus (2022). "Altered Cholinergic Innervation in De Novo Parkinson’s Disease with and Without Cognitive Impairment." Movement Disorders 37(4): 713-723.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/172328
dc.description.abstractBackgroundAltered cholinergic innervation plays a putative role in cognitive impairment in Parkinson’s disease (PD) at least in advanced stages. Identification of the relationship between cognitive impairment and cholinergic innervation early in the disease will provide better insight into disease prognosis and possible early intervention.ObjectiveThe aim was to assess regional cholinergic innervation status in de novo patients with PD, with and without cognitive impairment.MethodsFifty-seven newly diagnosed, treatment-naive, PD patients (32 men, mean age 64.6 ± 8.2 years) and 10 healthy controls (5 men, mean age 54.6 ± 6.0 years) were included. All participants underwent cholinergic [18F]fluoroethoxybenzovesamicol positron emission tomography and detailed neuropsychological assessment. PD patients were classified as either cognitively normal (PD-NC) or mild cognitive impairment (PD-MCI). Whole brain voxel-based group comparisons were performed.ResultsResults show bidirectional cholinergic innervation changes in PD. Both PD-NC and PD-MCI groups showed significant cortical cholinergic denervation compared to controls (P < 0.05, false discovery rate corrected), primarily in the posterior cortical regions. Higher-than-normal binding was most prominent in PD-NC in both cortical and subcortical regions, including the cerebellum, cingulate cortex, putamen, gyrus rectus, hippocampus, and amygdala.ConclusionAltered cholinergic innervation is already present in de novo patients with PD. Posterior cortical cholinergic losses were present in all patients independent of cognitive status. Higher-than-normal binding in cerebellar, frontal, and subcortical regions in cognitively intact patients may reflect compensatory cholinergic upregulation in early-stage PD. Limited or failing cholinergic upregulation may play an important role in early, clinically evident cognitive impairment in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercognition
dc.subject.otheracetylcholine
dc.subject.otherpositron emission tomography imaging
dc.subject.otherParkinson’s disease
dc.titleAltered Cholinergic Innervation in De Novo Parkinson’s Disease with and Without Cognitive Impairment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172328/1/mds28913.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172328/2/mds28913_am.pdf
dc.identifier.doi10.1002/mds.28913
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceDautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, et al. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 2014; 34 ( 13 ): 4509 – 4518.
dc.identifier.citedreferenceBoertien JM, van der Zee S, Chrysou A, Gerritsen MJJ, Jansonius NM, Spikman JM, et al. Study protocol of the DUtch PARkinson cohort (DUPARC): a prospective, observational study of de novo Parkinson’s disease patients for the identification and validation of biomarkers for Parkinson’s disease subtypes, progression and pathophysiology. BMC Neurol 2020; 20 ( 1 ): 245
dc.identifier.citedreferencePostuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015 Oct; 30 ( 12 ): 1591 – 1601.
dc.identifier.citedreferenceSchmand B, Bakker D, Saan R, Louman J. The Dutch Reading test for adults: a measure of premorbid intelligence level. Tijdschr Gerontol Geriatr 1991 Feb; 22 ( 1 ): 15 – 19.
dc.identifier.citedreferenceLitvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society task force guidelines. Mov Disord 2012; 27 ( 3 ): 349 – 356.
dc.identifier.citedreferenceGoldman JG, Holden S, Ouyang B, Bernard B, Goetz CG, Stebbins GT. Diagnosing PD-MCI by MDS task force criteria: how many and which neuropsychological tests? Mov Disord 2015; 30 ( 3 ): 402 – 406.
dc.identifier.citedreferenceSpinhoven P, Ormel J, Sloekers PP, Kempen GI, Speckens AE, Van Hemert AM. A validation study of the hospital anxiety and depression scale (HADS) in different groups of Dutch subjects. Psychol Med 1997; 27 ( 2 ): 363 – 370.
dc.identifier.citedreferenceStebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC. How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord 2013 May; 28 ( 5 ): 668 – 670.
dc.identifier.citedreferenceWellcome Trust Centre for Neuroimaging. University College, London, England. https://www.fil.ion.ucl.ac.uk/spm/software/spm12/.
dc.identifier.citedreferenceBohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT, et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 2019; 85 ( 4 ): 538 – 549.
dc.identifier.citedreferenceMuller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992; 12 ( 4 ): 571 – 583.
dc.identifier.citedreferenceKanel P, Müller MLTM, van der Zee S, Sanchez-Catasus CA, Koeppe RA, Frey KA, et al. Topography of cholinergic changes in dementia with Lewy bodies and key neural network hubs. J Neuropsychiatry Clin Neurosci 2020; 32 ( 4 ): 370 – 375.
dc.identifier.citedreferenceZtaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson’s disease. Neurochem Int 2019; 126: 1 – 10.
dc.identifier.citedreferenceIkonomovic MD, Abrahamson EE, Isanski BA, Wuu J, Mufson EJ, DeKosky ST. Superior frontal cortex cholinergic axon density in mild cognitive impairment and early Alzheimer disease. Arch Neurol 2007; 64 ( 9 ): 1312 – 1317.
dc.identifier.citedreferenceDeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51 ( 2 ): 145 – 155.
dc.identifier.citedreferenceKim K, Bohnen NI, Muller MLTM, Lustig C. Compensatory dopaminergic-cholinergic interactions in conflict processing: evidence from patients with Parkinson’s disease. Neuroimage 2019; 190: 94 – 106.
dc.identifier.citedreferenceBohnen NI, Grothe MJ, Ray NJ, Müller MLTM, Teipel SJ. Recent advances in cholinergic imaging and cognitive decline—revisiting the cholinergic hypothesis of dementia. Curr Geriatr Rep 2018; 7 ( 1 ): 1 – 11.
dc.identifier.citedreferenceLiu S-Y, Wile DJ, Fu JF, Valerio J, Shahinfard E, McCormick S, et al. The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson’s disease: a cross-sectional PET study. Lancet Neurol 2018; 17 ( 4 ): 309 – 316.
dc.identifier.citedreferenceBedard M-A, Aghourian M, Legault-Denis C, Postuma RB, Soucy J-P, Gagnon J-F, et al. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: a PET imaging study with (18)F-FEOBV. Sleep Med 2019; 58: 35 – 41.
dc.identifier.citedreferencePostuma RB. Prodromal Parkinson’s disease--using REM sleep behavior disorder as a window. Parkinsonism Relat Disord 2014; 20 ( Suppl 1 ): S1 – S4.
dc.identifier.citedreferenceRahayel S, Postuma RB, Montplaisir J, Mišić B, Tremblay C, Vo A, et al. A prodromal brain-clinical pattern of cognition in Synucleinopathies. Ann Neurol 2021; 89 ( 2 ): 341 – 357.
dc.identifier.citedreferenceGilman S, Koeppe RA, Nan B, Wang C-N, Wang X, Junck L, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 2010; 74 ( 18 ): 1416 – 1423.
dc.identifier.citedreferenceWojtala J, Heber IA, Neuser P, Heller J, Kalbe E, Rehberg SP, et al. Cognitive decline in Parkinson’s disease: the impact of the motor phenotype on cognition. J Neurol Neurosurg Psychiatry 2019; 90 ( 2 ): 171 – 179.
dc.identifier.citedreferencePoletti M, Frosini D, Pagni C, Baldacci F, Nicoletti V, Tognoni G, et al. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2012; 83 ( 6 ): 601 – 606.
dc.identifier.citedreferenceMüller MLTM, Bohnen NI. Cholinergic dysfunction in parkinson’s disease. Curr Neurol Neurosci Rep 2013; 13 ( 9 ): 377.
dc.identifier.citedreferenceGrace J, Amick MM, Friedman JH. A double-blind comparison of galantamine hydrobromide ER and placebo in Parkinson disease. J Neurol Neurosurg Psychiatry 2009; 80 ( 1 ): 18 – 23.
dc.identifier.citedreferenceMamikonyan E, Xie SX, Melvin E, Weintraub D. Rivastigmine for mild cognitive impairment in Parkinson disease: a placebo-controlled study. Mov Disord 2015; 30 ( 7 ): 912 – 918.
dc.identifier.citedreferencePost B, Muslimovic D, van Geloven N, Speelman JD, Schmand B, de Haan RJ, et al. Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Mov Disord 2011; 26 ( 3 ): 449 – 456.
dc.identifier.citedreferenceLawson RA, Yarnall AJ, Duncan GW, Khoo TK, Breen DP, Barker RA, et al. Severity of mild cognitive impairment in early Parkinson’s disease contributes to poorer quality of life. Parkinsonism Relat Disord 2014; 20 ( 10 ): 1071 – 1075.
dc.identifier.citedreferenceAarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 2010; 75 ( 12 ): 1062 – 1069.
dc.identifier.citedreferenceDomellöf ME, Ekman U, Forsgren L, Elgh E. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand 2015; 132 ( 2 ): 79 – 88.
dc.identifier.citedreferenceAarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol 2003; 60 ( 3 ): 387 – 392.
dc.identifier.citedreferencePalavra NC, Naismith SL, Lewis SJG. Mild cognitive impairment in Parkinson’s disease: a review of current concepts. Neurol Res Int 2013; 2013: 576091
dc.identifier.citedreferenceHalliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord 2014; 29 ( 5 ): 634 – 650.
dc.identifier.citedreferenceBohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011; 221 ( 2 ): 564 – 573.
dc.identifier.citedreferenceBallinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91 ( 6 ): 1199 – 1218.
dc.identifier.citedreferenceZhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev Neurosci 2016; 27 ( 8 ): 769 – 776.
dc.identifier.citedreferenceSelden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998; 121 ( Pt 1 ): 2249 – 2257.
dc.identifier.citedreferenceMesulam MM. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res 1996; 109: 285 – 297.
dc.identifier.citedreferenceHilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005; 65 ( 11 ): 1716 – 1722.
dc.identifier.citedreferenceKlein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74 ( 11 ): 885 – 892.
dc.identifier.citedreferenceShimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 2009; 73 ( 4 ): 273 – 278.
dc.identifier.citedreferenceBohnen NI, Müller MLTM, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 2012; 32 ( 8 ): 1609 – 1617.
dc.identifier.citedreferenceBohnen NI, Albin RL, Müller MLTM, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the Predemented cognitive Spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol 2015; 72 ( 2 ): 194 – 200.
dc.identifier.citedreferenceBohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006; 253 ( 2 ): 242 – 247.
dc.identifier.citedreferencevan der Zee S, Müller MLTM, Kanel P, van Laar T, Bohnen NI. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov Disord 2021; 36 ( 3 ): 642 – 650.
dc.identifier.citedreferencePetrou M, Frey KA, Kilbourn MR, PJH S, Raffel DM, Bohnen NI, et al. In vivo imaging of human cholinergic nerve terminals with (−)-5-18F-Fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 2014; 55 ( 3 ): 396 – 404.
dc.identifier.citedreferenceNejad-Davarani S, Koeppe RA, Albin RL, Frey KA, Müller MLTM, Bohnen NI. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [18F]-FEOBV. Mol Psychiatry 2019; 24 ( 3 ): 322 – 327.
dc.identifier.citedreferencevan der Zee S, Vallez Garcia D, Elsinga PH, et al. [18F]Fluoroethoxybenzovesamicol in Parkinson’s disease patients: quantification of a novel cholinergic positron emission tomography tracer. Mov Disord 2019 Jun; 34 ( 6 ): 924 – 926.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.