Show simple item record

An Overview of ARTMIP’s Tier 2 Reanalysis Intercomparison: Uncertainty in the Detection of Atmospheric Rivers and Their Associated Precipitation

dc.contributor.authorCollow, A. B. Marquardt
dc.contributor.authorShields, C. A.
dc.contributor.authorGuan, B.
dc.contributor.authorKim, S.
dc.contributor.authorLora, J. M.
dc.contributor.authorMcClenny, E. E.
dc.contributor.authorNardi, K.
dc.contributor.authorPayne, A.
dc.contributor.authorReid, K.
dc.contributor.authorShearer, E. J.
dc.contributor.authorTomé, R.
dc.contributor.authorWille, J. D.
dc.contributor.authorRamos, A. M.
dc.contributor.authorGorodetskaya, I. V.
dc.contributor.authorLeung, L. R.
dc.contributor.authorO’Brien, T. A.
dc.contributor.authorRalph, F. M.
dc.contributor.authorRutz, J.
dc.contributor.authorUllrich, P. A.
dc.contributor.authorWehner, M.
dc.date.accessioned2022-05-06T17:29:12Z
dc.date.available2023-05-06 13:29:10en
dc.date.available2022-05-06T17:29:12Z
dc.date.issued2022-04-27
dc.identifier.citationCollow, A. B. Marquardt; Shields, C. A.; Guan, B.; Kim, S.; Lora, J. M.; McClenny, E. E.; Nardi, K.; Payne, A.; Reid, K.; Shearer, E. J.; Tomé, R. ; Wille, J. D.; Ramos, A. M.; Gorodetskaya, I. V.; Leung, L. R.; O’Brien, T. A. ; Ralph, F. M.; Rutz, J.; Ullrich, P. A.; Wehner, M. (2022). "An Overview of ARTMIP’s Tier 2 Reanalysis Intercomparison: Uncertainty in the Detection of Atmospheric Rivers and Their Associated Precipitation." Journal of Geophysical Research: Atmospheres 127(8): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/172330
dc.description.abstractAtmospheric rivers, or long but narrow regions of enhanced water vapor transport, are an important component of the hydrologic cycle as they are responsible for much of the poleward transport of water vapor and result in precipitation, sometimes extreme in intensity. Despite their importance, much uncertainty remains in the detection of atmospheric rivers in large datasets such as reanalyses and century scale climate simulations. To understand this uncertainty, the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) developed tiered experiments, including the Tier 2 Reanalysis Intercomparison that is presented here. Eleven detection algorithms submitted hourly tags--binary fields indicating the presence or absence of atmospheric rivers--of detected atmospheric rivers in the Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) and European Centre for Medium-Range Weather Forecasts’ Reanalysis Version 5 (ERA5) as well as six-hourly tags in the Japanese 55-year Reanalysis (JRA-55). Due to a higher climatological mean for integrated water vapor transport in MERRA-2, atmospheric rivers were detected more frequently relative to the other two reanalyses, particularly in algorithms that use a fixed threshold for water vapor transport. The finer horizontal resolution of ERA5 resulted in narrower atmospheric rivers and an ability to detect atmospheric rivers along resolved coastlines. The fraction of hemispheric area covered by ARs varies throughout the year in all three reanalyses, with different atmospheric river detection tools having different seasonal cycles.Key PointsEnhanced integrated water vapor transport in MERRA-2 leads to increased detection of atmospheric rivers in algorithms with fixed thresholds relative to JRA-55 and ERA5Algorithms that use relative thresholds have better agreement between reanalyses than those with absolute thresholdsAlgorithms result in conflicting seasonal cycles of the average hemispheric area covered by atmospheric rivers
dc.publisherAmerican Geophysical Union
dc.publisherWiley Periodicals, Inc.
dc.subject.otherERA5
dc.subject.otherJRA-55
dc.subject.otherreanalysis intercomparison
dc.subject.otherMERRA-2
dc.subject.otheratmospheric river
dc.titleAn Overview of ARTMIP’s Tier 2 Reanalysis Intercomparison: Uncertainty in the Detection of Atmospheric Rivers and Their Associated Precipitation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172330/1/jgrd57722_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172330/2/jgrd57722.pdf
dc.identifier.doi10.1029/2021JD036155
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRalph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J., et al. ( 2019 ). ARTMIP-early start comparison of Atmospheric River detection tools: How many atmospheric rivers hit northern California’s Russian River watershed? Climate Dynamics, 52, 4973 – 4994. https://doi.org/10.1007/s00382-018-4427-5
dc.identifier.citedreferenceMassoud, E. C., Espinoza, V., Guan, B., & Waliser, D. E. ( 2019 ). Global climate model ensemble approaches for future projections of atmospheric rivers. Earth’s Future, 7, 1136 – 1151. https://doi.org/10.1029/2019EF001249
dc.identifier.citedreferenceMcCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E. B., et al. ( 2016 ). MERRA-2 Input Observations: Summary and Assessment. NASA Technical Report Series on Global Modeling and Data Assimilation (Vol. 46, p. 61 ). NASA/TM-2016-104606. Retrieved from https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf
dc.identifier.citedreferenceMcClenny, E. E., Ullrich, P. A., & Grotjahn, R. ( 2020 ). Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface temperature increases. Journal of Geophysical Research: Atmospheres, 125, e2020JD033421. https://doi.org/10.1029/2020JD033421
dc.identifier.citedreferenceMontini, T. L., Jones, C., & Carvalho, L. M. V. ( 2019 ). The South American low-level jet: A new climatology, variability, and changes. Journal of Geophysical Research: Atmospheres, 124, 1200 – 1218. https://doi.org/10.1029/2018JD029634
dc.identifier.citedreferenceMundhenk, B. D., Barnes, E. A., & Maloney, E. D. ( 2016 ). All-season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29 ( 13 ), 4885 – 4903. https://doi.org/10.1175/JCLI-D-15-0655.1
dc.identifier.citedreferenceNeiman, P. J., Schick, L. J., Ralph, F. M., Hughes, M., & Wick, G. A. ( 2011 ). Flooding in western Washington: The connection to atmospheric rivers. Journal of Hydrometeorology, 12, 1337 – 1358. https://doi.org/10.1175/2011JHM1358.1
dc.identifier.citedreferenceO’Brien, T. A., Payne, A. E., Shields, C. A., Rutz, J., Brands, S., Castellano, C., et al. ( 2020 ). Detection uncertainty matters for understanding atmospheric rivers. Bulletin of the American Meteorological Society, 101, E790 – E796. https://doi.org/10.1175/BAMS-D-19-0348.1
dc.identifier.citedreferenceO’Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L. R., et al. ( 2021 ). Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment. Earth and Space Science Open Archive, 31. https://doi.org/10.1002/essoar.10504170.1
dc.identifier.citedreferencePark, C., Son, S.-W., & Kim, H. ( 2021 ). Distinct features of atmospheric rivers in the early versus late East Asian summer monsoon and their impacts on monsoon rainfall. Journal of Geophysical Research: Atmospheres, 126, e2020JD033537. https://doi.org/10.1029/2020JD033537
dc.identifier.citedreferencePayne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., et al. ( 2020 ). Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 1 ( 3 ), 143 – 157. https://doi.org/10.1038/s43017-020-0030-5
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2014 ). Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA Reanalysis. Journal of Climate, 27 ( 18 ), 7133 – 7150. https://doi.org/10.1175/JCLI-D-14-00034.1
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2015 ). An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. Journal of Geophysical Research: Atmospheres, 120, 11 – 173. https://doi.org/10.1002/2015JD023586
dc.identifier.citedreferencePrabhat, K., Mudigonda, M., Kim, S., Kapp-Schwoerer, L., Graubner, A., Karaismailoglu, E., et al. ( 2021 ). ClimateNet: An expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather. Geoscientific Model Development, 14, 107 – 124. https://doi.org/10.5194/gmd-14-107-2021
dc.identifier.citedreferenceRalph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., & Eylander, J. ( 2018 ). Defining “Atmospheric River”: How the glossary of meteorology helped resolve a debate. Bulletin of the American Meteorological Society, 99 ( 4 ), 837 – 839. https://doi.org/10.1175/BAMS-D-17-0157.1
dc.identifier.citedreferenceRalph, F. M., Neiman, P. J., Wick, G. A., GutmanDettinger, S. I. M. D., Cayan, D. R., White, A. B., & White, A. B. ( 2006 ). Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33, L13801. https://doi.org/10.1029/2006GL026689
dc.identifier.citedreferenceRamos, A. M., Blamey, R. C., Algarra, I., Nieto, R., Gimeno, L., Tomé, R., et al. ( 2019 ). From Amazonia to southern Africa: Atmospheric moisture transport through low-level jets and atmospheric rivers. Annals of the New York Academy of Sciences, 1436, 217 – 230. https://doi.org/10.1111/nyas.139602019
dc.identifier.citedreferenceRamos, A. M., Nieto, R., Tomé, R., Gimeno, L., Trigo, R. M., Liberato, M. L. R., & Lavers, D. A. ( 2016 ). Atmospheric rivers moisture sources from a Lagrangian perspective. Earth System Dynamics, 7 ( 2 ), 371 – 384. https://doi.org/10.5194/esd-7-371-2016
dc.identifier.citedreferenceRamos, A. M., Trigo, R. M., Liberato, M. L. R., & Tomé, R. ( 2015 ). Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16 ( 2 ), 579 – 597. https://doi.org/10.1175/JHM-D-14-0103.1
dc.identifier.citedreferenceReid, K. J., King, A. D., Lane, T. P., & Short, E. ( 2020 ). The sensitivity of atmospheric river identification to integrated water vapor transport threshold, resolution, and regridding method. Journal of Geophysical Research: Atmospheres, 125, e2020JD032897. https://doi.org/10.1029/2020JD032897
dc.identifier.citedreferenceReid, K. J., Rosier, S. M., Harrington, L. J., King, A. D., & Lane, T. P. ( 2021 ). Extreme rainfall in New Zealand and its association with Atmospheric Rivers. Environmental Research Letters, 16, 044012. https://doi.org/10.1088/1748-9326/abeae0
dc.identifier.citedreferenceRhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O’Brien, T. A., Patricola, C. M., et al. ( 2020 ). The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophysical Research Letters, 47, e2020GL089096. https://doi.org/10.1029/2020GL089096
dc.identifier.citedreferenceRutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., et al. ( 2019 ). The Atmospheric River tracking method intercomparison project (ARTMIP): Quantifying uncertainties in Atmospheric River climatology. Journal of Geophysical Research: Atmospheres, 124, 13777 – 13802. https://doi.org/10.1029/2019JD030936
dc.identifier.citedreferenceRutz, J. J., Steenburgh, W. J., & Ralph, F. M. ( 2014 ). Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States. Monthly Weather Review, 142 ( 2 ), 905 – 921. https://doi.org/10.1175/MWR-D-13-00168.1
dc.identifier.citedreferenceRyoo, J., Kaspi, Y., Waugh, D. W., Kiladis, G. N., Waliser, D. E., Fetzer, E. J., & Kim, J. ( 2013 ). Impact of Rossby Wave Breaking on U.S. West Coast Winter Precipitation during ENSO Events. Journal of Climate, 26 ( 17 ), 6360 – 6382. https://doi.org/10.1175/JCLI-D-12-00297.1
dc.identifier.citedreferenceShearer, E. J., Nguyen, P., Sellars, S. L., Analui, B., Kawzenuk, B., Hsu, K., & Sorooshian, S. ( 2020 ). Examination of global midlatitude atmospheric river lifecycles using an object-oriented methodology. Journal of Geophysical Research: Atmospheres, 125, e2020JD033425. https://doi.org/10.1029/2020JD033425
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016a ). Atmospheric river landfall-latitude changes in future climate simulations. Geophysical Research Letters, 43 ( 16 ), 8775 – 8782. https://doi.org/10.1002/2016GL070470
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016b ). Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophysical Research Letters, 43 ( 14 ), 7767 – 7773. https://doi.org/10.1002/2016GL069476
dc.identifier.citedreferenceShields, C. A., Rosenbloom, N., Bates, S., Hannay, C., Hu, A., Payne, A. E., et al. ( 2019 ). Meridional heat transport during atmospheric rivers in high-resolution CESM climate projections. Geophysical Research Letters, 46, 14702 – 14712. https://doi.org/10.1029/2019GL085565
dc.identifier.citedreferenceShields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., et al. ( 2018 ). Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11 ( 6 ), 2455 – 2474. https://doi.org/10.5194/gmd-11-2455-2018
dc.identifier.citedreferenceSkinner, C. B., Lora, J. M., Payne, A. E., & Poulsen, C. J. ( 2020 ). Atmospheric river changes shaped mid-latitude hydroclimate since the mid-Holocene. Earth and Planetary Science Letters, 541, 116293. https://doi.org/10.1016/j.epsl.2020.116293
dc.identifier.citedreferenceVera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin, J., et al. ( 2006 ). The South American Low-Level Jet Experiment. Bulletin of the American Meteorological Society, 87 ( 1 ), 63 – 78. https://doi.org/10.1175/BAMS-87-1-63
dc.identifier.citedreferenceWaliser, D., & Guan, B. ( 2017 ). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10 ( 3 ), 179 – 183. https://doi.org/10.1038/ngeo2894
dc.identifier.citedreferenceWille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., & Codron, F. ( 2019 ). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911 – 916. https://doi.org/10.1038/s41561-019-0460-1
dc.identifier.citedreferenceWille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., et al. ( 2021 ). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126, e2020JD033788. https://doi.org/10.1029/2020JD033788
dc.identifier.citedreferenceXue, Y., Li, J., Menzel, W. P., Borbas, E., Ho, S.-P., Li, Z., & Li, J. ( 2019 ). Characteristics of satellite sampling errors in total precipitable water from SSMIS, HIRS, and COSMIC observations. Journal of Geophysical Research: Atmospheres, 124, 6966 – 6981. https://doi.org/10.1029/2018JD030045
dc.identifier.citedreferenceZavadoff, B. L., & Kirtman, B. P. ( 2020 ). Dynamic and thermodynamic modulators of European Atmospheric Rivers. Journal of Climate, 33 ( 10 ), 4167 – 4185. https://doi.org/10.1175/JCLI-D-19-0601.1
dc.identifier.citedreferenceZhou, Y., & Kim, H. ( 2019 ). Impact of distinct origin locations on the life cycles of landfalling atmospheric rivers over the U.S. West Coast. Journal of Geophysical Research: Atmospheres, 124, 11897 – 11909. https://doi.org/10.1029/2019jd031218
dc.identifier.citedreferenceZhou, Y., O’Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. ( 2021 ). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126, e2020JD033711. https://doi.org/10.1029/2020JD033711
dc.identifier.citedreferenceZhu, Y., & Newell, R. E. ( 1998 ). A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review, 126. https://doi.org/10.1175/1520-0493(1998)126<0725:apafmf>2.0.co;2
dc.identifier.citedreferenceEiras-Barca, J., Ramos, A. M., Algarra, I., Vázquez, M., Dominguez, F., Miguez-Macho, G., et al. ( 2021 ). European West Coast atmospheric rivers: A scale to characterize strength and impacts. Weather and Climate Extremes, 31, 100305. https://doi.org/10.1016/j.wace.2021.100305
dc.identifier.citedreferenceGuan, B., Waliser, D. E., & Ralph, F. M. ( 2018 ). An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. Journal of Hydrometeorology, 19 ( 2 ), 321 – 337. https://doi.org/10.1175/jhm-d-17-0114.1
dc.identifier.citedreferenceAdler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., et al. ( 2003 ). The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). Journal of Hydrometeorology, 4, 11472 – 1167. https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
dc.identifier.citedreferenceArabzadeh, A., Ehsani, M. R., Guan, B., Heflin, S., & Behrangi, A. ( 2020 ). Global intercomparison of atmospheric rivers precipitation in remote sensing and reanalysis products. Journal of Geophysical Research: Atmospheres, 125, e2020JD033021. https://doi.org/10.1029/2020JD033021
dc.identifier.citedreferenceBenedict, J. J., Clement, A. C., & Medeiros, B. ( 2019 ). Atmospheric blocking and other large-scale precursor patterns of landfalling atmospheric rivers in the North Pacific: A CESM2 study. Journal of Geophysical Research: Atmospheres, 124, 11330 – 11353. https://doi.org/10.1029/2019JD030790
dc.identifier.citedreferenceBlamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R., & Reason, C. J. C. ( 2018 ). The influence of atmospheric rivers over the south Atlantic on winter rainfall in South Africa. Journal of Hydrometeorology, 19 ( 1 ), 127 – 142. https://doi.org/10.1175/JHM-D-17-0111.1
dc.identifier.citedreferenceBosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., & Mocko, D. ( 2017 ). Atmospheric water balance and variability in the MERRA-2 reanalysis. Journal of Climate, 30 ( 4 ), 1177 – 1196. https://doi.org/10.1175/JCLI-D-16-0338.1
dc.identifier.citedreferenceChen, M., & Xie, P. ( 2008 ). CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting. American Geophysical Union. Abstract A24A-05.
dc.identifier.citedreferenceChen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., & Richmond, M. ( 2018 ). Predictability of extreme precipitation in western U.S. watersheds based on atmospheric river occurrence, intensity, and duration. Geophysical Research Letters, 45 ( 11 ), 693701 – 693711. https://doi.org/10.1029/2018GL079831
dc.identifier.citedreferenceChen, X., Leung, L. R., Wigmosta, M., & Richmond, M. ( 2019 ). Impact of atmospheric rivers on surface hydrological processes in western U.S. watersheds. Journal of Geophysical Research: Atmospheres, 124, 8896 – 8916. https://doi.org/10.1029/2019JD030468
dc.identifier.citedreferenceCollow, A. B. M., Mersiovsky, H., & Bosilovich, M. G. ( 2020 ). Large-scale influences on atmospheric river–induced extreme precipitation events along the coast of Washington State. Journal of Hydrometeorology, 21, 2139 – 2156. https://doi.org/10.1175/JHM-D-19-0272.1
dc.identifier.citedreferenceDettinger, M. D. ( 2013 ). Atmospheric rivers as drought busters on the U.S. West Coast. Journal of Hydrometeorology, 14 ( 6 ), 1721 – 1732. https://doi.org/10.1175/JHM-D-13-02.1
dc.identifier.citedreferenceDettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. ( 2011 ). Atmospheric rivers, floods, and the water resources of California. Water, 3, 445 – 478. https://doi.org/10.3390/w3020445
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. ( 2017 ). The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). Journal of Climate, 30 ( 14 ), 5419 – 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceGimeno, L., Algarra, I., Eiras-Barca, J., Ramos, A. M., & Nieto, R. ( 2021 ). Atmospheric River, a term encompassing different meteorological patterns. Wiley Interdisciplinary Reviews: Water, 8 ( 6 ), e1558. https://doi.org/10.1002/wat2.1558
dc.identifier.citedreferenceGlobal Modeling & Assimilation Office (GMAO) ( 2015b ). MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly,Instantaneous,Pressure-Level,Assimilation,Assimilated Meteorological Fields V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: 26 April 2021. https://doi.org/10.5067/QBZ6MG944HW0
dc.identifier.citedreferenceGlobal Modeling & Assimilation Office (GMAO) ( 2015a ). MERRA-2 tavg1_2d_int_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Vertically Integrated Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: 1 April 2020. https://doi.org/10.5067/Q5GVUVUIVGO7
dc.identifier.citedreferenceGorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. ( 2014 ). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41 ( 17 ), 6199 – 6206. https://doi.org/10.1002/2014GL060881
dc.identifier.citedreferenceGuan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., & Neiman, P. J. ( 2010 ). Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters, 37, L20401. https://doi.org/10.1029/2010GL044696
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2015 ). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120 ( 24 ), 12514 – 12535. https://doi.org/10.1002/2015JD024257
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2017 ). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research: Atmospheres, 122, 5556 – 5581. https://doi.org/10.1002/2016JD026174
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2019 ). Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. Journal of Geophysical Research: Atmospheres, 124, 12523 – 12552. https://doi.org/10.1029/2019JD031205
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999 – 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHu, J. M., & Nolin, A. W. ( 2019 ). Snowpack contributions and temperature characterization of landfalling atmospheric rivers in the Western Cordillera of the United States. Geophysical Research Letters, 46, 6663 – 6672. https://doi.org/10.1029/2019GL083564
dc.identifier.citedreferenceHuang, H., Patricola, C. M., Bercos-Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., & Collins, W. D. ( 2021 ). Sources of subseasonal-to-seasonal predictability of atmospheric rivers and precipitation in the western United States. Journal of Geophysical Research: Atmospheres, 126, e2020JD034053. https://doi.org/10.1029/2020JD034053
dc.identifier.citedreferenceHuffman, G. J., Behrangi, A., Bolvin, D. T., & Nelkin, E. J. ( 2021 ). In G. J. Huffman, A. Behrangi, D. T. Bolvin, E. J. Nelkin, & M. Greenbelt (Eds.), GPCP version 3.1 Daily Precipitation Data Set. USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: 5 January 2022. https://doi.org/10.5067/MEASURES/GPCP/DATA303
dc.identifier.citedreferenceHuning, L. S., Guan, B., Waliser, D. E., & Lettenmaier, D. P. ( 2019 ). Sensitivity of seasonal snowfall attribution to atmospheric rivers and their reanalysis-based detection. Geophysical Research Letters, 46, 794 – 803. https://doi.org/10.1029/2018GL080783
dc.identifier.citedreferenceIonita, M., Nagavciuc, V., & Guan, B. ( 2020 ). Rivers in the sky, flooding on the ground: The role of atmospheric rivers in inland flooding in central Europe. Hydrology and Earth System Sciences, 24 ( 11 ), 5125 – 5147. https://doi.org/10.5194/hess-24-5125-2020
dc.identifier.citedreferenceKim, S., & Chiang, J. C. H. ( 2021 ). Atmospheric river lifecycle characteristics shaped by synoptic conditions at Genesis. International Journal of Climatology, 1, 18 – 538. https://doi.org/10.1002/joc.7258
dc.identifier.citedreferenceKobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. ( 2015 ). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93, 5 – 48. https://doi.org/10.2151/jmsj.2015-001
dc.identifier.citedreferenceLavers, D. A., Allan, R. P., Wood, E. F., Villarini, G., Brayshaw, D. J., & Wade, A. J. ( 2011 ). Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters, 38, L23803. https://doi.org/10.1029/2011GL049783
dc.identifier.citedreferenceLavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., & Wade, A. J. ( 2012 ). The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. Journal of Geophysical Research, 117, D20106. https://doi.org/10.1029/2012JD018027
dc.identifier.citedreferenceLora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. ( 2017 ). North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophysical Research Letters, 44 ( 2 ), 1051 – 1059. https://doi.org/10.1002/2016GL071541
dc.identifier.citedreferenceLora, J. M., Shields, C. A., & Rutz, J. J. ( 2020 ). Consensus and disagreement in Atmospheric River detection: ARTMIP global catalogues. Geophysical Research Letters, 47, e2020GL089302. https://doi.org/10.1029/2020GL089302
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.