Show simple item record

Distribution of biomass dynamics in relation to tree size in forests across the world

dc.contributor.authorPiponiot, Camille
dc.contributor.authorAnderson-Teixeira, Kristina J.
dc.contributor.authorDavies, Stuart J.
dc.contributor.authorAllen, David
dc.contributor.authorBourg, Norman A.
dc.contributor.authorBurslem, David F. R. P.
dc.contributor.authorCárdenas, Dairon
dc.contributor.authorChang-Yang, Chia-Hao
dc.contributor.authorChuyong, George
dc.contributor.authorCordell, Susan
dc.contributor.authorDattaraja, Handanakere Shivaramaiah
dc.contributor.authorDuque, Álvaro
dc.contributor.authorEdiriweera, Sisira
dc.contributor.authorEwango, Corneille
dc.contributor.authorEzedin, Zacky
dc.contributor.authorFilip, Jonah
dc.contributor.authorGiardina, Christian P.
dc.contributor.authorHowe, Robert
dc.contributor.authorHsieh, Chang-Fu
dc.contributor.authorHubbell, Stephen P.
dc.contributor.authorInman-Narahari, Faith M.
dc.contributor.authorItoh, Akira
dc.contributor.authorJaník, David
dc.contributor.authorKenfack, David
dc.contributor.authorKrál, Kamil
dc.contributor.authorLutz, James A.
dc.contributor.authorMakana, Jean-Remy
dc.contributor.authorMcMahon, Sean M.
dc.contributor.authorMcShea, William
dc.contributor.authorMi, Xiangcheng
dc.contributor.authorBt. Mohamad, Mohizah
dc.contributor.authorNovotný, Vojtěch
dc.contributor.authorO’Brien, Michael J.
dc.contributor.authorOstertag, Rebecca
dc.contributor.authorParker, Geoffrey
dc.contributor.authorPérez, Rolando
dc.contributor.authorRen, Haibao
dc.contributor.authorReynolds, Glen
dc.contributor.authorMd Sabri, Mohamad Danial
dc.contributor.authorSack, Lawren
dc.contributor.authorShringi, Ankur
dc.contributor.authorSu, Sheng-Hsin
dc.contributor.authorSukumar, Raman
dc.contributor.authorSun, I-Fang
dc.contributor.authorSuresh, Hebbalalu S.
dc.contributor.authorThomas, Duncan W.
dc.contributor.authorThompson, Jill
dc.contributor.authorUriarte, Maria
dc.contributor.authorVandermeer, John
dc.contributor.authorWang, Yunquan
dc.contributor.authorWare, Ian M.
dc.contributor.authorWeiblen, George D.
dc.contributor.authorWhitfeld, Timothy J. S.
dc.contributor.authorWolf, Amy
dc.contributor.authorYao, Tze Leong
dc.contributor.authorYu, Mingjian
dc.contributor.authorYuan, Zuoqiang
dc.contributor.authorZimmerman, Jess K.
dc.contributor.authorZuleta, Daniel
dc.contributor.authorMuller-Landau, Helene C.
dc.date.accessioned2022-05-06T17:29:45Z
dc.date.available2023-07-06 13:29:43en
dc.date.available2022-05-06T17:29:45Z
dc.date.issued2022-06
dc.identifier.citationPiponiot, Camille; Anderson-Teixeira, Kristina J. ; Davies, Stuart J.; Allen, David; Bourg, Norman A.; Burslem, David F. R. P.; Cárdenas, Dairon ; Chang-Yang, Chia-Hao ; Chuyong, George; Cordell, Susan; Dattaraja, Handanakere Shivaramaiah; Duque, Álvaro ; Ediriweera, Sisira; Ewango, Corneille; Ezedin, Zacky; Filip, Jonah; Giardina, Christian P.; Howe, Robert; Hsieh, Chang-Fu ; Hubbell, Stephen P.; Inman-Narahari, Faith M. ; Itoh, Akira; Janík, David ; Kenfack, David; Král, Kamil ; Lutz, James A.; Makana, Jean-Remy ; McMahon, Sean M.; McShea, William; Mi, Xiangcheng; Bt. Mohamad, Mohizah; Novotný, Vojtěch ; O’Brien, Michael J.; Ostertag, Rebecca; Parker, Geoffrey; Pérez, Rolando ; Ren, Haibao; Reynolds, Glen; Md Sabri, Mohamad Danial; Sack, Lawren; Shringi, Ankur; Su, Sheng-Hsin ; Sukumar, Raman; Sun, I-Fang ; Suresh, Hebbalalu S.; Thomas, Duncan W.; Thompson, Jill; Uriarte, Maria; Vandermeer, John; Wang, Yunquan; Ware, Ian M.; Weiblen, George D.; Whitfeld, Timothy J. S.; Wolf, Amy; Yao, Tze Leong; Yu, Mingjian; Yuan, Zuoqiang; Zimmerman, Jess K.; Zuleta, Daniel; Muller-Landau, Helene C. (2022). "Distribution of biomass dynamics in relation to tree size in forests across the world." New Phytologist (5): 1664-1677.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/172339
dc.publisherSpringer-Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomass
dc.subject.otherclimate gradients
dc.subject.otherforests
dc.subject.othertree size distribution
dc.subject.otherwoody mortality
dc.subject.otherwoody productivity
dc.titleDistribution of biomass dynamics in relation to tree size in forests across the world
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172339/1/nph17995_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172339/2/nph17995-sup-0004-SupInfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172339/3/nph17995.pdf
dc.identifier.doi10.1111/nph.17995
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceMarsooli R, Lin N, Emanuel K, Feng K. 2019. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf coasts in spatially varying patterns. Nature Communications 10: e3785.
dc.identifier.citedreferenceBrearley FQ. 2012. Ectomycorrhizal associations of the Dipterocarpaceae. Biotropica 44: 637 – 648.
dc.identifier.citedreferenceBurt A, Calders K, Cuni-Sanchez A, Gómez-Dans J, Lewis P, Lewis SL, Malhi Y, Phillips OL, Disney M. 2020. Assessment of bias in pan-tropical biomass predictions. Frontiers in Forests and Global Change 3: e12.
dc.identifier.citedreferenceChave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20: 3177 – 3190.
dc.identifier.citedreferenceChojnacky DC, Heath LS, Jenkins JC. 2014. Updated generalized biomass equations for North American tree species. Forestry 87: 129 – 151.
dc.identifier.citedreferenceClark DA, Clark DB. 1992. Life history diversity of canopy and emergent trees in a Neotropical rain forest. Ecological Monographs 62: 315.
dc.identifier.citedreferenceColey PD. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74: 531 – 536.
dc.identifier.citedreferenceCondit RS. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Berlin, Germany: Springer-Verlag.
dc.identifier.citedreferenceCôté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM. 2004. Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics 35: 113 – 147.
dc.identifier.citedreferenceCushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SKY, Muller-Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53: 1442 – 1453.
dc.identifier.citedreferenceDavies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS et al. 2021. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253: e108907.
dc.identifier.citedreferenceDiffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Charland A, Liu Y, Haugen M, Tsiang M et al. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences, USA 114: 4881 – 4886.
dc.identifier.citedreferenceDisney M. 2019. Terrestrial L i DAR: a three-dimensional revolution in how we look at trees. New Phytologist 222: 1736 – 1741.
dc.identifier.citedreferenceDisney M, Burt A, Wilkes P, Armston J, Duncanson L. 2020. New 3D measurements of large redwood trees for biomass and structure. Scientific Reports 10: e16721.
dc.identifier.citedreferenceDrake JE, Raetz LM, Davis SC, Delucia EH. 2010. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine ( Pinus taeda L.). Plant, Cell & Environment 33: 1756 – 1766.
dc.identifier.citedreferenceElliott KJ, Miniat CF, Pederson N, Laseter SH. 2015. Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology 21: 4627 – 4641.
dc.identifier.citedreferenceEstes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC et al. 2011. Trophic downgrading of planet Earth. Science 333: 301 – 306.
dc.identifier.citedreferenceFisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ et al. 2018. Vegetation demographics in Earth system models: a review of progress and priorities. Global Change Biology 24: 35 – 54.
dc.identifier.citedreferenceGardiner B, Marshall B, Achim A, Belcher R, Wood C. 2005. The stability of different silvicultural systems: a wind-tunnel investigation. Forestry: An International Journal of Forest Research 78: 471 – 484.
dc.identifier.citedreferenceGermain SJ, Lutz JA. 2020. Climate extremes may be more important than climate means when predicting species range shifts. Climatic Change 163: 579 – 598.
dc.identifier.citedreferenceGora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384 – 391.
dc.identifier.citedreferenceGora EM, Muller-Landau HC, Burchfield JC, Bitzer PM, Hubbell SP, Yanoviak SP. 2020. A mechanistic and empirically supported lightning risk model for forest trees. Journal of Ecology 108: 1956 – 1966.
dc.identifier.citedreferenceHogan JA, Zimmerman JK, Thompson J, Nytch CJ, Uriarte M. 2016. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one years of change. Ecosphere 7: e1405.
dc.identifier.citedreferenceHood SM, Varner JM, van Mantgem P, Cansler CA. 2018. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters 13: e113004.
dc.identifier.citedreferenceHubau W, De Mil T, Van den Bulcke J, Phillips OL, Angoboy Ilondea B, Van Acker J, Sullivan MJP, Nsenga L, Toirambe B, Couralet C et al. 2019. The persistence of carbon in the African forest understory. Nature Plants 5: 133 – 140.
dc.identifier.citedreferenceJames KR, Haritos N, Ades PK. 2006. Mechanical stability of trees under dynamic loads. American Journal of Botany 93: 1522 – 1530.
dc.identifier.citedreferenceJaník D, Vrška T, Hort L, Unar P, Král K. 2018. Where have all the tree diameters grown? Patterns in Fagus sylvatica L. diameter growth on their run to the upper canopy. Ecosphere 9: e02508.
dc.identifier.citedreferenceJans L, Poorter L, van Rompaey RSAR, Bongers F. 1993. Gaps and forest zones in tropical moist forest in Ivory Coast. Biotropica 25: 258 – 269.
dc.identifier.citedreferenceKarger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the Earth’s land surface areas. Scientific Data 4: e170122.
dc.identifier.citedreferenceKing DA, Wright SJ, Connell JH. 2006. The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. Journal of Tropical Ecology 22: 11 – 24.
dc.identifier.citedreferenceKoch GW, Sillett SC, Jennings GM, Davis SD. 2004. The limits to tree height. Nature 428: 851 – 854.
dc.identifier.citedreferenceKohyama TS, Kohyama TI, Sheil D. 2019. Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: formulae, biases and recommendations. Forest Ecology and Management 433: 729 – 740.
dc.identifier.citedreferenceKohyama TS, Potts MD, Kohyama TI, Niiyama K, Yao TL, Davies SJ, Sheil D. 2020. Trade-off between standing biomass and productivity in species-rich tropical forest: evidence, explanations and implications. Journal of Ecology 108: 2571 – 2583.
dc.identifier.citedreferenceKonapala G, Mishra AK, Wada Y, Mann ME. 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 11: e3044.
dc.identifier.citedreferenceKoven CD, Knox RG, Fisher RA, Chambers JQ, Christoffersen BO, Davies SJ, Detto M, Dietze MC, Faybishenko B, Holm J et al. 2020. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (F ates ) at Barro Colorado Island, Panama. Biogeosciences 17: 3017 – 3044.
dc.identifier.citedreferenceLedo A, Paul KI, Burslem DFRP, Ewel JJ, Barton C, Battaglia M, Brooksbank K, Carter J, Eid TH, England JR et al. 2018. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytologist 217: 8 – 11.
dc.identifier.citedreferenceLewis SL, Edwards DP, Galbraith D. 2015. Increasing human dominance of tropical forests. Science 349: 827 – 832.
dc.identifier.citedreferenceLongo M, Knox RG, Medvigy DM, Levine NM, Dietze MC, Kim Y, Swann ALS, Zhang K, Rollinson CR, Bras RL et al. 2019. The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – part 1: model description. Geoscientific Model Development 12: 4309 – 4346.
dc.identifier.citedreferenceLutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson-Teixeira KJ, Andrade A, Baltzer J, Becker KMLL et al. 2018. Global importance of large-diameter trees. Global Ecology and Biogeography 27: 849 – 864.
dc.identifier.citedreferenceMagnani F, Mencuccini M, Grace J. 2000. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell & Environment 23: 251 – 263.
dc.identifier.citedreferenceMalhi Y, Doughty C, Galbraith D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 3225 – 3245.
dc.identifier.citedreferenceMalhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13: 439 – 450.
dc.identifier.citedreferenceMartínez Cano I, Shevliakova E, Malyshev S, Wright SJ, Detto M, Pacala SW, Muller-Landau HC. 2020. Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (L m3ppa - tv ). Global Change Biology 26: 4478 – 4494.
dc.identifier.citedreferenceMarvin DC, Asner GP. 2016. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environmental Research Letters 11: e94027.
dc.identifier.citedreferenceMcDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A et al. 2018. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist 219: 851 – 869.
dc.identifier.citedreferenceMcEwan RW, Lin Y-C, Sun I-F, Hsieh C-F, Su S-H, Chang L-W, Song G-Z, Wang H-H, Hwong J-L, Lin K-C et al. 2011. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecology and Management 262: 1817 – 1825.
dc.identifier.citedreferenceMcGarvey JC, Bourg NA, Thompson JR, McShea WJ, Shen X. 2013. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-Atlantic temperate deciduous forest. Northeastern Naturalist 20: 451 – 468.
dc.identifier.citedreferenceMcGregor IR, Helcoski R, Kunert N, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Zailaa J, Stovall AEL, Bourg NA, McShea WJ et al. 2021. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist 231: 601 – 616.
dc.identifier.citedreferenceMeakem V, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Muller-Landau HC, Wright SJ, Hubbell SP, Condit R, Anderson-Teixeira KJ. 2018. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist 219: 947 – 958.
dc.identifier.citedreferencevan der Meer PJ, Bongers F. 1996. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. Journal of Ecology 84: 19 – 29.
dc.identifier.citedreferenceMencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B. 2005. Size-mediated ageing reduces vigour in trees. Ecology Letters 8: 1183 – 1190.
dc.identifier.citedreferenceMensah S, Noulèkoun F, Ago EE. 2020. Aboveground tree carbon stocks in West African semi-arid ecosystems: dominance patterns, size class allocation and structural drivers. Global Ecology and Conservation 24: e01331.
dc.identifier.citedreferenceMildrexler DJ, Berner LT, Law BE, Birdsey RA, Moomaw WR. 2020. Large trees dominate carbon storage in forests east of the cascade crest in the United States Pacific Northwest. Frontiers in Forests and Global Change 3: e594274.
dc.identifier.citedreferenceMuller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N et al. 2006a. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575 – 588.
dc.identifier.citedreferenceMuller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, Chuyong G, Co L, Davies S, Foster R et al. 2006b. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecology Letters 9: 589 – 602.
dc.identifier.citedreferenceMuller-Landau HC, Cushman KC, Arroyo EE, Martinez Cano I, Anderson-Teixeira KJ, Backiel B. 2021. Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist 229: 3065 – 3087.
dc.identifier.citedreferenceNewbery DM, van der Burgt XM, Worbes M, Chuyong GB. 2013. Transient dominance in a Central African rain forest. Ecological Monographs 83: 339 – 382.
dc.identifier.citedreferenceNgomanda A, Engone Obiang NL, Lebamba J, Moundounga Mavouroulou Q, Gomat H, Mankou GS, Loumeto J, Midoko Iponga D, Kossi Ditsouga F, Zinga Koumba R et al. 2014. Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? Forest Ecology and Management 312: 1 – 9.
dc.identifier.citedreferenceOuimette AP, Ollinger SV, Richardson AD, Hollinger DY, Keenan TF, Lepine LC, Vadeboncoeur MA. 2018. Carbon fluxes and interannual drivers in a temperate forest ecosystem assessed through comparison of top-down and bottom-up approaches. Agricultural and Forest Meteorology 256–257: 420 – 430.
dc.identifier.citedreferencePfeifer EM, Hicke JA, Meddens AJH. 2011. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Global Change Biology 17: 339 – 350.
dc.identifier.citedreferencePloton P, Mortier F, Barbier N, Cornu G, Réjou-Méchain M, Rossi V, Alonso A, Bastin J-F, Bayol N, Bénédet F et al. 2020. A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data 7: e221.
dc.identifier.citedreferencePoorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208: 736 – 749.
dc.identifier.citedreferencePoorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A et al. 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography 24: 1314 – 1328.
dc.identifier.citedreferenceQuesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9: 2203 – 2246.
dc.identifier.citedreferenceRéjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. 2017. biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution 8: 1163 – 1167.
dc.identifier.citedreferenceRyan MG, Binkley D, Fownes JH, Giardina CP, Senock RS. 2004. An experimental test of the causes of forest growth decline with stand age. Ecological Monographs 74: 393 – 414.
dc.identifier.citedreferenceSegura G, Balvanera P, Durán E, Pérez A. 2002. Tree community structure and stem mortality along a water availability gradient in a Mexican tropical dry forest. Plant Ecology 169: 259 – 271.
dc.identifier.citedreferenceSeidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J et al. 2017. Forest disturbances under climate change. Nature Climate Change 7: 395 – 402.
dc.identifier.citedreferenceSlik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22: 1261 – 1271.
dc.identifier.citedreferenceSmith MN, Taylor TC, van Haren J, Rosolem R, Restrepo-Coupe N, Adams J, Wu J, de Oliveira RC, da Silva R, de Araujo AC et al. 2020. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nature Plants 6: 1225 – 1230.
dc.identifier.citedreferenceStark SC, Enquist BJ, Saleska SR, Leitold V, Schietti J, Longo M, Alves LF, Camargo PB, Oliveira RC. 2015. Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. Ecology Letters 18: 636 – 645.
dc.identifier.citedreferenceStark SC, Leitold V, Wu JL, Hunter MO, de Castilho CV, Costa FRC, McMahon SM, Parker GG, Shimabukuro MT, Lefsky MA et al. 2012. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters 15: 1406 – 1414.
dc.identifier.citedreferenceStephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90 – 93.
dc.identifier.citedreferenceStovall AEL, Anderson-Teixeira KJ, Shugart HH. 2018. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management 427: 217 – 229.
dc.identifier.citedreferenceThomas SC. 2011. Age-related changes in tree growth and functional biology: the role of reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE, eds. Size- and age-related changes in tree structure and function. Dordrecht, the Netherlands: Springer, 33 – 64.
dc.identifier.citedreferenceValladares F, Niinemets Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237 – 257.
dc.identifier.citedreferenceVincent JB, Turner BL, Alok C, Novotny V, Weiblen GD, Whitfeld TJS. 2018. Tropical forest dynamics in unstable terrain: a case study from New Guinea. Journal of Tropical Ecology 34: 157 – 175.
dc.identifier.citedreferenceYanoviak SP, Gora EM, Bitzer PM, Burchfield JC, Muller-Landau HC, Detto M, Paton S, Hubbell SP. 2020. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytologist 225: 1936 – 1944.
dc.identifier.citedreferenceZanne AE, Lopez-Gonzalez G, Coomes DAA, Ilic J, Jansen S, Lewis SLSL, Miller RBB, Swenson NGG, Wiemann MCC, Chave J 2009. Global wood density database. doi: 10.5061/dryad.234.
dc.identifier.citedreferenceZellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368: 772 – 775.
dc.identifier.citedreferenceZuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F. 2013. Tropical forests and global change: filling knowledge gaps. Trends in Plant Science 18: 413 – 419.
dc.identifier.citedreferenceAdams TP, Purves DW, Pacala SW. 2007. Understanding height-structured competition in forests: is there an R * for light? Proceedings of the Royal Society B: Biological Sciences 274: 3039 – 3048.
dc.identifier.citedreferenceAnderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph Wright S, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL et al. 2015a. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology 21: 528 – 549.
dc.identifier.citedreferenceAnderson-Teixeira KJ, Herrmann V, Banbury Morgan R, Bond-Lamberty B, Cook-Patton SC, Ferson AE, Muller-Landau HC, Wang MMH. 2021. Carbon cycling in mature and regrowth forests globally. Environmental Research Letters 16: e53009.
dc.identifier.citedreferenceAnderson-Teixeira KJ, McGarvey JC, Muller-Landau HC, Park JY, Gonzalez-Akre EB, Herrmann V, Bennett AC, So CV, Bourg NA, Thompson JR et al. 2015b. Size-related scaling of tree form and function in a mixed-age forest. Functional Ecology 29: 1587 – 1602.
dc.identifier.citedreferenceBachofen C, D’Odorico P, Buchmann N. 2020. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192: 323 – 339.
dc.identifier.citedreferenceBanbury Morgan R, Herrmann V, Kunert N, Bond-Lamberty B, Muller-Landau HC, Anderson-Teixeira KJ. 2021. Global patterns of forest autotrophic carbon fluxes. Global Change Biology 27: 2840 – 2855.
dc.identifier.citedreferenceBastin J-F, Rutishauser E, Kellner JR, Saatchi S, Pélissier R, Hérault B, Slik F, Bogaert J, De Cannière C, Marshall AR et al. 2018. Pan-tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography 27: 1366 – 1383.
dc.identifier.citedreferenceBennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: e15139.
dc.identifier.citedreferenceBohlman S, Pacala S. 2012. A forest structure model that determines crown layers and partitions growth and mortality rates for landscape-scale applications of tropical forests. Journal of Ecology 100: 508 – 518.
dc.identifier.citedreferenceBrando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE. 2012. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology 18: 630 – 641.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.