Show simple item record

Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect

dc.contributor.authorBrown, Hunter
dc.contributor.authorWang, Hailong
dc.contributor.authorFlanner, Mark
dc.contributor.authorLiu, Xiaohong
dc.contributor.authorSingh, Balwinder
dc.contributor.authorZhang, Rudong
dc.contributor.authorYang, Yang
dc.contributor.authorWu, Mingxuan
dc.date.accessioned2022-05-06T17:29:57Z
dc.date.available2023-05-06 13:29:54en
dc.date.available2022-05-06T17:29:57Z
dc.date.issued2022-04
dc.identifier.citationBrown, Hunter; Wang, Hailong; Flanner, Mark; Liu, Xiaohong; Singh, Balwinder; Zhang, Rudong; Yang, Yang; Wu, Mingxuan (2022). "Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect." Journal of Advances in Modeling Earth Systems 14(4): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/172343
dc.description.abstractSnow and ice albedo reduction due to deposition of absorbing particles (snow darkening effect [SDE]) warms the Earth system and is largely attributed to black carbon (BC) and dust. Absorbing organic aerosol (BrC) also contributes to SDE but has received less attention due to uncertainty and challenges in model representation. This work incorporates the SDE of absorbing organic aerosol (BrC) from biomass burning and biofuel sources into the Snow Ice and Aerosol Radiative (SNICAR) model within a variant of the Community Earth System Model. Additionally, 12 different emission regions of BrC and BC from biomass burning and biofuel sources are tagged to quantify the relative contribution to global and regional SDE. BrC global SDE (0.021–0.056 Wm−2 over land area and 0.0061–0.016 Wm−2 over global area) is larger than other model estimates, corresponding to 37%–98% of the SDE from BC. When compared to observations, BrC simulations have a range in median bias (−2.5% to +21%), with better agreement in the simulations that include BrC photochemical bleaching. The largest relative contributions to global BrC SDE are traced to Northern Asia (23%–31%), Southeast Asia (16%–21%), and South Africa (13%–17%). Transport from Southeast Asia contributes nearly half of the regional BrC SDE in Antarctica (0.084–0.3 Wm−2), which is the largest regional input to global BrC SDE. Lower latitude BrC SDE is correlated with snowmelt, in-snow BrC concentrations, and snow cover fraction, while polar BrC SDE is correlated with surface insolation and snowmelt. This indicates the importance of in-snow processes and snow feedbacks on modeled BrC SDE.Plain Language SummaryBright surfaces like snow and ice reflect some of the sun’s light back to space, leading to less surface warming. These reflective surfaces can be coated by light absorbing particles such as soot and dust, reducing their reflectivity and speeding up the warming of the climate. “Brown carbon” is another absorbing particle that also darkens these surfaces. Fewer studies have looked at this climate effect due to challenges in modeling brown carbon (BrC) in the atmosphere and on snow. Here, a more detailed treatment of BrC from fires is added to a global climate model to understand how BrC affects snow reflectivity. This model also keeps track of where the BrC in smoke is released to understand how different parts of the world impact snow surfaces. One of the main findings of this work is that BrC is better at darkening snow surfaces than previous work has shown. When compared to soot–which is the strongest snow darkening agent–BrC has a comparable effect, ranging from around half to the same darkening of snow surfaces as soot. Additionally, BrC from large fires in close proximity to snow has largest impacts on snow reflectivity.Key PointsBrown carbon (BrC) forcing on snow is larger than in previous modeling studies and is comparable to the snow darkening effect (SDE) of black carbonNorthern Asia, Southeast Asia, and Southern Africa are the largest source contributors to global BrC SDESeasonal BrC is closely correlated with snow processes in the model, indicating the importance of aerosol-snow feedbacks
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraerosol-snow interactions
dc.subject.otherbrown carbon
dc.subject.otherclimate model
dc.subject.otherCESM
dc.subject.otherbiomass burning
dc.subject.otherSNICAR
dc.titleBrown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172343/1/2021MS002768sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172343/2/jame21579_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172343/3/jame21579.pdf
dc.identifier.doi10.1029/2021MS002768
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceSkeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevåg, M. M., & Hoyle, C. R. ( 2011 ). Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 11 ( 22 ), 11827 – 11857. https://doi.org/10.5194/acp-11-11827-2011
dc.identifier.citedreferenceSaleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., et al. ( 2014 ). Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geoscience, 7 ( 9 ), 647 – 650. https://doi.org/10.1038/ngeo2220
dc.identifier.citedreferenceSchwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., & Fahey, D. W. ( 2013 ). Black carbon aerosol size in snow. Scientific Reports, 3 ( 1 ), 1356. https://doi.org/10.1038/srep01356
dc.identifier.citedreferenceSkiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., & Landry, C. C. ( 2012 ). Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates: Dust radiative forcing snowmelt response. Water Resources Research, 48 ( 7 ). https://doi.org/10.1029/2012WR011986
dc.identifier.citedreferenceTedesco, M., Fettweis, X., van den Broeke, M. R., van de Wal, R. S. W., Smeets, C. J. P. P., van de Berg, W. J., et al. ( 2011 ). The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 6 ( 1 ), 014005. https://doi.org/10.1088/1748-9326/6/1/014005
dc.identifier.citedreferenceTorres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., et al. ( 2020 ). Stratospheric injection of massive smoke plume from Canadian Boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations. Journal of Geophysical Research: Atmospheres, 125 ( 10 ). https://doi.org/10.1029/2020JD032579
dc.identifier.citedreferenceTuccella, P., Pitari, G., Colaiuda, V., Raparelli, E., & Curci, G. ( 2021 ). Present-day radiative effect from radiation-absorbing aerosols in snow. Atmospheric Chemistry and Physics, 21 ( 9 ), 6875 – 6893. https://doi.org/10.5194/acp-21-6875-2021
dc.identifier.citedreferencevan der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. ( 2017 ). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9 ( 2 ), 697 – 720. https://doi.org/10.5194/essd-9-697-2017
dc.identifier.citedreferenceWang, H., Easter, R. C., Zhang, R., Ma, P., Singh, B., Zhang, K., et al. ( 2020 ). Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12 ( 1 ). https://doi.org/10.1029/2019MS001851
dc.identifier.citedreferenceWang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., et al. ( 2014 ). Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways: Source attribution of BC in the Arctic. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12888 – 12909. https://doi.org/10.1002/2014JD022297
dc.identifier.citedreferenceWang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., et al. ( 2015 ). Carbonaceous aerosols recorded in a southeastern Tibetan glacier: Analysis of temporal variations and model estimates of sources and radiative forcing. Atmospheric Chemistry and Physics, 15 ( 3 ), 1191 – 1204. https://doi.org/10.5194/acp-15-1191-2015
dc.identifier.citedreferenceWang, X., Doherty, S. J., & Huang, J. ( 2013 ). Black carbon and other light-absorbing impurities in snow across Northern China. Journal of Geophysical Research: Atmospheres, 118 ( 3 ), 1471 – 1492. https://doi.org/10.1029/2012JD018291
dc.identifier.citedreferenceWang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., et al. ( 2018 ). Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 18 ( 2 ), 635 – 653. https://doi.org/10.5194/acp-18-635-2018
dc.identifier.citedreferenceWang, X., Heald, C. L., Sedlacek, A. J., Sá, S. S., Martin, S. T., Alexander, M. L., et al. ( 2016 ). Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations. Atmospheric Chemistry and Physics, 16 ( 19 ), 12733 – 12752. https://doi.org/10.5194/acp-16-12733-2016
dc.identifier.citedreferenceWard, J. L., Flanner, M. G., Bergin, M., Dibb, J. E., Polashenski, C. M., Soja, A. J., & Thomas, J. L. ( 2018 ). Modeled response of Greenland snowmelt to the presence of biomass burning-based absorbing aerosols in the atmosphere and snow. Journal of Geophysical Research: Atmospheres, 123 ( 11 ), 6122 – 6141. https://doi.org/10.1029/2017JD027878
dc.identifier.citedreferenceWarren, S. G. ( 1984 ). Impurities in snow: Effects on albedo and snowmelt (review). Annals of Glaciology, 5, 177 – 179. https://doi.org/10.3189/1984AoG5-1-177-179
dc.identifier.citedreferenceWarren, S. G. ( 2013 ). Can black carbon in snow be detected by remote sensing? Journal of Geophysical Research: Atmospheres, 118 ( 2 ), 779 – 786. https://doi.org/10.1029/2012JD018476
dc.identifier.citedreferenceWarren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37 ( 12 ), 2734 – 2745. https://doi.org/10.1175/1520-0469(1980)037<2734:amftsa>2.0.co;2
dc.identifier.citedreferenceWu, C., Liu, X., Lin, Z., Rahimi-Esfarjani, S. R., & Lu, Z. ( 2018 ). Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmospheric Chemistry and Physics, 18 ( 2 ), 511 – 533. https://doi.org/10.5194/acp-18-511-2018
dc.identifier.citedreferenceWu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., et al. ( 2019 ). Modeling dust in East Asia by CESM and sources of biases. Journal of Geophysical Research: Atmospheres, 124 ( 14 ), 8043 – 8064. https://doi.org/10.1029/2019JD030799
dc.identifier.citedreferenceXu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., et al. ( 2009 ). Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106 ( 52 ), 22114 – 22118. https://doi.org/10.1073/pnas.0910444106
dc.identifier.citedreferenceYang, Y., Lou, S., Wang, H., Wang, P., & Liao, H. ( 2020 ). Trends and source apportionment of aerosols in Europe during 1980–2018. Atmospheric Chemistry and Physics, 20 ( 4 ), 2579 – 2590. https://doi.org/10.5194/acp-20-2579-2020
dc.identifier.citedreferenceYang, Y., Wang, H., Smith, S. J., Ma, P.-L., & Rasch, P. J. ( 2017 ). Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 17 ( 6 ), 4319 – 4336. https://doi.org/10.5194/acp-17-4319-2017
dc.identifier.citedreferenceYang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., et al. ( 2018 ). Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 8 ( 1 ), 2107. https://doi.org/10.1038/s41598-018-20437-7
dc.identifier.citedreferenceYang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., et al. ( 2018 ). Source apportionments of aerosols and their direct radiative forcing and long-term trends over continental United States. Earth’s Future, 6 ( 6 ), 793 – 808. https://doi.org/10.1029/2018EF000859
dc.identifier.citedreferenceYasunari, T. J., Aoki, T., Aoki, K., Murao, N., Yamagata, S., & Kodama, Y. ( 2014 ). The GOddard Snow Impurity Module (GOSWIM) for the NASA GEOS-5 Earth system model: Preliminary comparisons with observations in Sapporo, Japan. SOLA, 10, 8. https://doi.org/10.2151/sola.2014-011
dc.identifier.citedreferenceYasunari, T. J., Koster, R. D., Lau, W. K. M., & Kim, K.-M. ( 2015 ). Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 2014JD022977. https://doi.org/10.1002/2014JD022977
dc.identifier.citedreferenceZhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., et al. ( 2015 ). Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics Discussions, 15 ( 9 ), 12957 – 13000. https://doi.org/10.5194/acpd-15-12957-2015
dc.identifier.citedreferenceZhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., et al. ( 2015 ). Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 15 ( 11 ), 6205 – 6223. https://doi.org/10.5194/acp-15-6205-2015
dc.identifier.citedreferenceZhong, M., & Jang, M. ( 2014 ). Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmospheric Chemistry and Physics, 14 ( 3 ), 1517 – 1525. https://doi.org/10.5194/acp-14-1517-2014
dc.identifier.citedreferenceAbatzoglou, J. T., & Williams, A. P. ( 2016 ). Impact of anthropogenic climate change on wildfire across Western US forests. Proceedings of the National Academy of Sciences, 113 ( 42 ), 11770 – 11775. https://doi.org/10.1073/pnas.1607171113
dc.identifier.citedreferenceAdler, G., Wagner, N. L., Lamb, K. D., Manfred, K. M., Schwarz, J. P., Franchin, A., et al. ( 2019 ). Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Science and Technology, 53 ( 9 ), 976 – 989. https://doi.org/10.1080/02786826.2019.1617832
dc.identifier.citedreferenceAlbani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., et al. ( 2014 ). Improved dust representation in the community atmosphere model. Journal of Advances in Modeling Earth Systems, 6 ( 3 ), 541 – 570. https://doi.org/10.1002/2013MS000279
dc.identifier.citedreferenceBeres, N. D., Sengupta, D., Samburova, V., Khlystov, A. Y., & Moosmüller, H. ( 2020 ). Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmospheric Chemistry and Physics, 20 ( 10 ), 6095 – 6114. https://doi.org/10.5194/acp-20-6095-2020
dc.identifier.citedreferenceBond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118 ( 11 ), 5380 – 5552. https://doi.org/10.1002/jgrd.50171
dc.identifier.citedreferenceBoucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. ( 2013 ). Clouds and aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
dc.identifier.citedreferenceBrown, H., Liu, X., Feng, Y., Jiang, Y., Wu, M., Lu, Z., et al. ( 2018 ). Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmospheric Chemistry and Physics, 18 ( 24 ), 17745 – 17768. https://doi.org/10.5194/acp-18-17745-2018
dc.identifier.citedreferenceBrown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., et al. ( 2021 ). Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 12 ( 1 ), 277. https://doi.org/10.1038/s41467-020-20482-9
dc.identifier.citedreferenceClarke, A. D., & Noone, K. J. ( 1985 ). Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmospheric Environment, 19, 2045 – 2053. https://doi.org/10.1016/0004-6981(85)90113-1
dc.identifier.citedreferenceDang, C., Brandt, R. E., & Warren, S. G. ( 2015 ). Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 5446 – 5468. https://doi.org/10.1002/2014JD022646
dc.identifier.citedreferencede Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., et al. ( 2019 ). Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics Discussions, 1 – 77. https://doi.org/10.5194/acp-2018-1309
dc.identifier.citedreferenceDoherty, S. J., Dang, C., Hegg, D. A., Zhang, R., & Warren, S. G. ( 2014 ). Black carbon and other light-absorbing particles in snow of central North America: Black carbon in North American snow. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12807 – 12831. https://doi.org/10.1002/2014JD022350
dc.identifier.citedreferenceDoherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., & Brandt, R. E. ( 2010 ). Light-absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics, 10 ( 23 ), 11647 – 11680. https://doi.org/10.5194/acp-10-11647-2010
dc.identifier.citedreferenceFeng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., et al. ( 2020 ). The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 13 ( 2 ), 461 – 482. https://doi.org/10.5194/gmd-13-461-2020
dc.identifier.citedreferenceFlanner, M. G., Liu, X., Zhou, C., Penner, J. E., & Jiao, C. ( 2012 ). Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmospheric Chemistry and Physics, 12 ( 10 ), 4699 – 4721. https://doi.org/10.5194/acp-12-4699-2012
dc.identifier.citedreferenceFlanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., & Rasch, P. J. ( 2009 ). Springtime warming and reduced snow cover from carbonaceous particles. Atmospheric Chemistry and Physics, 9 ( 7 ), 2481 – 2497. https://doi.org/10.5194/acp-9-2481-2009
dc.identifier.citedreferenceFlanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. ( 2007 ). Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112 ( D11 ). https://doi.org/10.1029/2006JD008003
dc.identifier.citedreferenceForrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L., et al. ( 2015 ). Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 42 ( 11 ), 4623 – 4630. https://doi.org/10.1002/2015GL063897
dc.identifier.citedreferenceGautam, R., Hsu, N. C., Lau, W. K.-M., & Yasunari, T. J. ( 2013 ). Satellite observations of desert dust-induced Himalayan snow darkening. Geophysical Research Letters, 40 ( 5 ), 988 – 993. https://doi.org/10.1002/grl.50226
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. ( 2017 ). The Modern-Era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30 ( 14 ), 5419 – 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceGettelman, A., Morrison, H., Santos, S., Bogenschutz, P., & Caldwell, P. M. ( 2015 ). Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud Interactions. Journal of Climate, 28 ( 3 ), 1288 – 1307. https://doi.org/10.1175/JCLI-D-14-00103.1
dc.identifier.citedreferenceGhan, S. J., & Zaveri, R. A. ( 2007 ). Parameterization of optical properties for hydrated internally mixed aerosol. Journal of Geophysical Research, 112 ( D10 ). https://doi.org/10.1029/2006JD007927
dc.identifier.citedreferenceHagler, G. S. W., Bergin, M. H., Smith, E. A., Dibb, J. E., Anderson, C., & Steig, E. J. ( 2007 ). Particulate and water-soluble carbon measured in recent snow at Summit, Greenland. Geophysical Research Letters, 34 ( 16 ). https://doi.org/10.1029/2007GL030110
dc.identifier.citedreferenceHannay, C., & Neale, R. ( 2015 ). CAM5.4 simulations: The good, the bad and the ugly [presentation]. In 20th Annual CESM Workshop. University Corporation For Atmospheric Research (UCAR): National Center for Atmospheric Research (NCAR): NCAR Earth System Laboratory (NESL): Climate and Global Dynamics Division (CGD): Breckenridge, CO, US.
dc.identifier.citedreferenceHansen, J., & Nazarenko, L. ( 2004 ). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 2 ), 423 – 428. https://doi.org/10.1073/pnas.2237157100
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Kharecha, P., Lacis, A., Miller, R., et al. ( 2007 ). Climate simulations for 1880–2003 with GISS modelE. Climate Dynamics, 29 ( 7–8 ), 661 – 696. https://doi.org/10.1007/s00382-007-0255-8
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., et al. ( 2005 ). Efficacy of climate forcings. Journal of Geophysical Research, 110 ( D18 ), D18104. https://doi.org/10.1029/2005JD005776
dc.identifier.citedreferenceHe, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., et al. ( 2018 ). Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmospheric Chemistry and Physics, 18 ( 15 ), 11507 – 11527. https://doi.org/10.5194/acp-18-11507-2018
dc.identifier.citedreferenceHe, C., Liou, K., Takano, Y., Yang, P., Qi, L., & Chen, F. ( 2018 ). Impact of grain shape and multiple black carbon internal mixing on snow albedo: Parameterization and radiative effect analysis. Journal of Geophysical Research: Atmospheres, 123 ( 2 ), 1253 – 1268. https://doi.org/10.1002/2017JD027752
dc.identifier.citedreferenceHe, C., Liou, K.-N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P., et al. ( 2015 ). Variation of the radiative properties during black carbon aging: Theoretical and experimental intercomparison. Atmospheric Chemistry and Physics, 15 ( 20 ), 11967 – 11980. https://doi.org/10.5194/acp-15-11967-2015
dc.identifier.citedreferenceHegg, D. A., Warren, S. G., Grenfell, T. C., J Doherty, S., & Clarke, A. D. ( 2010 ). Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmospheric Chemistry and Physics, 10 ( 22 ), 10923 – 10938. https://doi.org/10.5194/acp-10-10923-2010
dc.identifier.citedreferenceHess, M., Koepke, P., & Schult, I. ( 1998 ). Optical properties of aerosols and clouds: The software package OPAC. Bulletin of the American Meteorological Society, 79 ( 5 ), 831 – 844. https://doi.org/10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2
dc.identifier.citedreferenceHirsch, E., & Koren, I. ( 2021 ). Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science, 371 ( 6535 ), 1269 – 1274. https://doi.org/10.1126/science.abe1415
dc.identifier.citedreferenceOleson, K. W., Gordon, B., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., et al. ( 2010 ). Technical description of version 4.0 of the Community Land Model, NCAR Tech. Note NCAR/TN-478+STR.
dc.identifier.citedreferenceHock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., et al. ( 2019 ). High mountain areas. In H. O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), IPCC special report on the ocean and cryosphere in a changing climate. in press.
dc.identifier.citedreferenceHoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. ( 2018 ). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11 ( 1 ), 369 – 408. https://doi.org/10.5194/gmd-11-369-2018
dc.identifier.citedreferenceHugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al. ( 2021 ). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592 ( 7856 ), 726 – 731. https://doi.org/10.1038/s41586-021-03436-z
dc.identifier.citedreferenceHurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., & Rosinski, J. ( 2008 ). A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. Journal of Climate, 21 ( 19 ), 5145 – 5153. https://doi.org/10.1175/2008JCLI2292.1
dc.identifier.citedreferenceJacobson, M. Z. ( 2012 ). Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. Journal of Geophysical Research, 117 ( D6 ). https://doi.org/10.1029/2011JD017218
dc.identifier.citedreferenceJiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., et al. ( 2014 ). An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics, 14 ( 5 ), 2399 – 2417. https://doi.org/10.5194/acp-14-2399-2014
dc.identifier.citedreferenceKoch, D., Menon, S., Del Genio, A., Ruedy, R., Alienov, I., & Schmidt, G. A. ( 2009 ). Distinguishing aerosol impacts on climate over the past century. Journal of Climate, 22 ( 10 ), 2659 – 2677. https://doi.org/10.1175/2008JCLI2573.1
dc.identifier.citedreferenceKrishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B. N., et al. ( 2016 ). Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dynamics, 47 ( 3–4 ), 1007 – 1027. https://doi.org/10.1007/s00382-015-2886-5
dc.identifier.citedreferenceLaskin, A., Laskin, J., & Nizkorodov, S. A. ( 2015 ). Chemistry of atmospheric Brown carbon. Chemical Reviews, 115 ( 10 ), 4335 – 4382. https://doi.org/10.1021/cr5006167
dc.identifier.citedreferenceLawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence, P. J., Levis, S., et al. ( 2012 ). The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. Journal of Climate, 25 ( 7 ), 2240 – 2260. https://doi.org/10.1175/JCLI-D-11-00103.1
dc.identifier.citedreferenceLi, C., He, Q., Hettiyadura, A. P. S., Käfer, U., Shmul, G., Meidan, D., et al. ( 2020 ). Formation of secondary Brown carbon in biomass burning aerosol proxies through NO 3 radical reactions. Environmental Science and Technology, 54 ( 3 ), 1395 – 1405. https://doi.org/10.1021/acs.est.9b05641
dc.identifier.citedreferenceLin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., & Zhou, C. ( 2014 ). Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. Journal of Geophysical Research: Atmospheres, 119 ( 12 ), 7453 – 7476. https://doi.org/10.1002/2013JD021186
dc.identifier.citedreferenceLin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., & Laskin, A. ( 2017 ). Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event. Environmental Science and Technology, 51 ( 20 ), 11561 – 11570. https://doi.org/10.1021/acs.est.7b02276
dc.identifier.citedreferenceLiu, D., He, C., Schwarz, J. P., & Wang, X. ( 2020 ). Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Npj Climate and Atmospheric Science, 3 ( 1 ), 40. https://doi.org/10.1038/s41612-020-00145-8
dc.identifier.citedreferenceLiu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. ( 2012 ). Toward a minimal representation of aerosols in climate models: Description and evaluation in the community atmosphere model CAM5. Geoscientific Model Development, 5 ( 3 ), 709 – 739. https://doi.org/10.5194/gmd-5-709-2012
dc.identifier.citedreferenceLiu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. ( 2016 ). Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the community atmosphere model. Geoscientific Model Development, 9 ( 2 ), 505 – 522. https://doi.org/10.5194/gmd-9-505-2016
dc.identifier.citedreferenceMeredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., et al. ( 2019 ). Polar regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), IPCC special report on the ocean and cryosphere in a changing climate. in press.
dc.identifier.citedreferenceMing, J., Wang, P., Zhao, S., & Chen, P. ( 2013 ). Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. Journal of Environmental Sciences, 25 ( 8 ), 7. https://doi.org/10.1016/s1001-0742(12)60220-4
dc.identifier.citedreferenceMorrison, H., & Gettelman, A. ( 2008 ). A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21 ( 15 ), 3642 – 3659. https://doi.org/10.1175/2008JCLI2105.1
dc.identifier.citedreferenceNeale, R. B., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, D. L., et al. ( 2012 ). Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp., Natl. Cent. for Atmos. Res, Boulder, CO, USA.
dc.identifier.citedreferenceNerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. ( 2018 ). Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115 ( 9 ), 2022 – 2025. https://doi.org/10.1073/pnas.1717312115
dc.identifier.citedreferencePainter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., et al. ( 2007 ). Impact of disturbed desert soils on duration of mountain snow cover. Geophysical Research Letters, 34 ( 12 ), L12502. https://doi.org/10.1029/2007GL030284
dc.identifier.citedreferencePainter, T. H., Bryant, A. C., & Skiles, S. M. ( 2012 ). Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophysical Research Letters, 39 ( 17 ). https://doi.org/10.1029/2012gl052457
dc.identifier.citedreferencePotenza, M. A. C., Albani, S., Delmonte, B., Villa, S., Sanvito, T., Paroli, B., et al. ( 2016 ). Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica. Scientific Reports, 6 ( 1 ), 28162. https://doi.org/10.1038/srep28162
dc.identifier.citedreferenceQian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. ( 2014 ). A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 9 ( 6 ), 064001. https://doi.org/10.1088/1748-9326/9/6/064001
dc.identifier.citedreferenceRahimi, S., Liu, X., Wu, C., Lau, W. K., Brown, H., Wu, M., & Qian, Y. ( 2019 ). Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: Experiments using variable-resolution CESM. Atmospheric Chemistry and Physics, 19 ( 18 ), 12025 – 12049. https://doi.org/10.5194/acp-19-12025-2019
dc.identifier.citedreferenceRahimi, S., Liu, X., Zhao, C., Lu, Z., & Lebo, Z. J. ( 2020 ). Examining the atmospheric radiative and snow-darkening effects of black carbon and dust across the Rocky Mountains of the United States using WRF-Chem. Atmospheric Chemistry and Physics, 20 ( 18 ), 10911 – 10935. https://doi.org/10.5194/acp-20-10911-2020
dc.identifier.citedreferenceRen, L., Yang, Y., Wang, H., Zhang, R., Wang, P., & Liao, H. ( 2020 ). Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018. Atmospheric Chemistry and Physics, 20 ( 14 ), 9067 – 9085. https://doi.org/10.5194/acp-20-9067-2020
dc.identifier.citedreferenceSaleh, R. ( 2020 ). From measurements to models: Toward accurate representation of brown carbon in climate calculations. Current Pollution Reports. https://doi.org/10.1007/s40726-020-00139-3
dc.identifier.citedreferenceSaleh, R., Cheng, Z., & Atwi, K. ( 2018 ). The brown–black continuum of light-absorbing combustion aerosols. Environmental Science and Technology Letters, 5 ( 8 ), 508 – 513. https://doi.org/10.1021/acs.estlett.8b00305
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.