Show simple item record

Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols

dc.contributor.authorElling, Felix J.
dc.contributor.authorEvans, Thomas W.
dc.contributor.authorNathan, Vinitra
dc.contributor.authorHemingway, Jordon D.
dc.contributor.authorKharbush, Jenan J.
dc.contributor.authorBayer, Barbara
dc.contributor.authorSpieck, Eva
dc.contributor.authorHusain, Fatima
dc.contributor.authorSummons, Roger e.
dc.contributor.authorPearson, Ann
dc.date.accessioned2022-05-06T17:30:19Z
dc.date.available2023-06-06 13:30:17en
dc.date.available2022-05-06T17:30:19Z
dc.date.issued2022-05
dc.identifier.citationElling, Felix J.; Evans, Thomas W.; Nathan, Vinitra; Hemingway, Jordon D.; Kharbush, Jenan J.; Bayer, Barbara; Spieck, Eva; Husain, Fatima; Summons, Roger e. ; Pearson, Ann (2022). "Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols." Geobiology (3): 399-420.
dc.identifier.issn1472-4677
dc.identifier.issn1472-4669
dc.identifier.urihttps://hdl.handle.net/2027.42/172350
dc.description.abstractHopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia- and nitrite-oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia-oxidizing (AOB), nitrite-oxidizing (NOB), and complete ammonia-oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen-containing bacteriohopanepolyols were tentatively identified, of which the so called BHP-743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin–Benson–Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
dc.publisherJonh Wiley & Sons Inc.
dc.subject.otherhopanoids
dc.subject.othernitrifying bacteria
dc.subject.othernitrite-oxidizing bacteria
dc.subject.otherbiomarker
dc.subject.otherbacteriohopanepolyols
dc.titleMarine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172350/1/gbi12484-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172350/2/gbi12484_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172350/3/gbi12484.pdf
dc.identifier.doi10.1111/gbi.12484
dc.identifier.sourceGeobiology
dc.identifier.citedreferenceSinninghe Damsté, J. S., Rijpstra, W. I. C., Dedysh, S. N., Foesel, B. U., & Villanueva, L. ( 2017 ). Pheno- and genotyping of hopanoid production in Acidobacteria. Frontiers in Microbiology, 8, 968.
dc.identifier.citedreferenceSpieck, E., Spohn, M., Wendt, K., Bock, E., Shively, J., Frank, J., Indenbirken, D., Alawi, M., Lücker, S., & Hüpeden, J. ( 2020 ). Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. The ISME Journal, 14, 364 – 379. https://doi.org/10.1038/s41396-019-0530-9
dc.identifier.citedreferenceStamatakis, A. ( 2014 ). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312 – 1313. https://doi.org/10.1093/bioinformatics/btu033
dc.identifier.citedreferenceStrickland, J. D. H., & Parsons, T. R. ( 1972 ). Ammonium and nitrite. In J. C. Stevenson, J. Watson, J. M. Reinhart, & D. G. Cook (Eds.), A practical handbook of seawater analysis (pp. 77 – 80 ). Fisheries Research Board of Canada.
dc.identifier.citedreferenceSturt, H. F., Summons, R. E., Smith, K., Elvert, M., & Hinrichs, K.-U. ( 2004 ). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – New biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617 – 628. https://doi.org/10.1002/rcm.1378
dc.identifier.citedreferenceSummons, R. E., Jahnke, L. L., Hope, J. M., & Logan, G. A. ( 1999 ). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554 – 557. https://doi.org/10.1038/23005
dc.identifier.citedreferenceTalbot, H. M., Bischoff, J., Inglis, G. N., Collinson, M. E., & Pancost, R. D. ( 2016 ). Polyfunctionalised bio- and geohopanoids in the Eocene Cobham Lignite. Organic Geochemistry, 96, 77 – 92. https://doi.org/10.1016/j.orggeochem.2016.03.006
dc.identifier.citedreferenceTalbot, H. M., Handley, L., Spencer-Jones, C. L., Dinga, B. J., Schefuß, E., Mann, P. J., Poulsen, J. R., Spencer, R. G. M., Wabakanghanzi, J. N., & Wagner, T. ( 2014 ). Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochimica et Cosmochimica Acta, 133, 387 – 401. https://doi.org/10.1016/j.gca.2014.02.035
dc.identifier.citedreferenceTalbot, H. M., McClymont, E. L., Inglis, G. N., Evershed, R. P., & Pancost, R. D. ( 2016 ). Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany). Organic Geochemistry, 97, 95 – 110. https://doi.org/10.1016/j.orggeochem.2016.04.011
dc.identifier.citedreferenceTalbot, H. M., Rohmer, M., & Farrimond, P. ( 2007 ). Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 1613 – 1622. https://doi.org/10.1002/rcm.2997
dc.identifier.citedreferenceTalbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., & Farrimond, P. ( 2008 ). Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry, 39, 232 – 263. https://doi.org/10.1016/j.orggeochem.2007.08.006
dc.identifier.citedreferenceTang, T., Mohr, W., Sattin, S. R., Rogers, D. R., Girguis, P. R., & Pearson, A. ( 2017 ). Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180 T grown photoautotrophically and photoheterotrophically. Geobiology, 15, 324 – 339.
dc.identifier.citedreferenceThiel, V., Blumenberg, M., Pape, T., Seifert, R., & Michaelis, W. ( 2003 ). Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 34, 81 – 87. https://doi.org/10.1016/S0146-6380(02)00191-2
dc.identifier.citedreferenceTyrrell, T. ( 1999 ). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525 – 531. https://doi.org/10.1038/22941
dc.identifier.citedreferenceVan Cappellen, P., & Ingall, E. D. ( 1996 ). Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271, 493 – 496. https://doi.org/10.1126/science.271.5248.493
dc.identifier.citedreferencevan der Meer, M. T. J., Schouten, S., & Sinninghe Damsté, J. S. ( 1998 ). The effect of the reversed tricarboxylic acid cycle on the 13 C contents of bacterial lipids. Geochimica et Cosmochimica Acta, 28, 527 – 533.
dc.identifier.citedreferencevan Dongen, B. E., Talbot, H. M., Schouten, S., Pearson, P. N., & Pancost, R. D. ( 2006 ). Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Organic Geochemistry, 37, 539 – 557. https://doi.org/10.1016/j.orggeochem.2006.01.003
dc.identifier.citedreferencevan Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M., & Lücker, S. ( 2015 ). Complete nitrification by a single microorganism. Nature, 528, 555 – 559. https://doi.org/10.1038/nature16459
dc.identifier.citedreferenceWakeham, S. G., Amann, R., Freeman, K. H., Hopmans, E. C., Jørgensen, B. B., Putnam, I. F., Schouten, S., Sinninghe Damsté, J. S., Talbot, H. M., & Woebken, D. ( 2007 ). Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry, 38, 2070 – 2097. https://doi.org/10.1016/j.orggeochem.2007.08.003
dc.identifier.citedreferenceWakeham, S. G., Turich, C., Schubotz, F., Podlaska, A., Li, X. N., Varela, R., Astor, Y., Sáenz, J. P., Rush, D., Sinninghe Damsté, J. S., Summons, R. E., Scranton, M. I., Taylor, G. T., & Hinrichs, K.-U. ( 2012 ). Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep Sea Research Part I: Oceanographic Research Papers, 63, 133 – 156. https://doi.org/10.1016/j.dsr.2012.01.005
dc.identifier.citedreferenceWard, B. B., & Carlucci, A. F. ( 1985 ). Marine ammonia- and nitrite-oxidizing bacteria: Serological diversity determined by immunofluorescence in culture and in the environment. Applied and Environmental Microbiology, 50, 8.
dc.identifier.citedreferenceWard, B. B., Glover, H. E., & Lipschultz, F. ( 1989 ). Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep Sea Research Part A. Oceanographic Research Papers, 36, 1031 – 1051. https://doi.org/10.1016/0198-0149(89)90076-9
dc.identifier.citedreferenceWarren, M. J., Raux, E., Schubert, H. L., & Escalante-Semerena, J. C. ( 2002 ). The biosynthesis of adenosylcobalamin (vitamin B 12 ). Natural Product Reports, 19, 390 – 412. https://doi.org/10.1039/b108967f
dc.identifier.citedreferenceWatson, S. W., & Waterbury, J. B. ( 1971 ). Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Archiv für Mikrobiologie, 77, 203 – 230. https://doi.org/10.1007/BF00408114
dc.identifier.citedreferenceWelander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E., & Newman, D. K. ( 2010 ). Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America, 107, 8537 – 8542. https://doi.org/10.1073/pnas.0912949107
dc.identifier.citedreferenceWelander, P. V., Doughty, D. M., Wu, C.-H., Mehay, S., Summons, R. E., & Newman, D. K. ( 2012 ). Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology, 10, 163 – 177. https://doi.org/10.1111/j.1472-4669.2011.00314.x
dc.identifier.citedreferenceWelander, P. V., Hunter, R. C., Zhang, L., Sessions, A. L., Summons, R. E., & Newman, D. K. ( 2009 ). Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. Journal of Bacteriology, 191, 6145 – 6156.
dc.identifier.citedreferenceWelander, P. V., & Summons, R. E. ( 2012 ). Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proceedings of the National Academy of Sciences of the United States of America, 109, 12905 – 12910. https://doi.org/10.1073/pnas.1208255109
dc.identifier.citedreferenceWilliams, T. J., Zhang, C. L., Scott, J. H., & Bazylinski, D. A. ( 2006 ). Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Applied and Environmental Microbiology, 72, 1322 – 1329. https://doi.org/10.1128/AEM.72.2.1322-1329.2006
dc.identifier.citedreferenceWu, C.-H., Bialecka-Fornal, M., & Newman, D. K. ( 2015 ). Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membranes. eLife, 4, e05663.
dc.identifier.citedreferenceZhu, C., Talbot, H. M., Wagner, T., Pan, J.-M., & Pancost, R. D. ( 2011 ). Distribution of hopanoids along a land to sea transect: Implications for microbial ecology and the use of hopanoids in environmental studies. Limnology and Oceanography, 56, 1850 – 1865. https://doi.org/10.4319/lo.2011.56.5.1850
dc.identifier.citedreferenceBoenigk, J., Stadler, P., Wiedlroither, A., & Hahn, M. W. ( 2004 ). Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Applied and Environmental Microbiology, 70, 5787 – 5793.
dc.identifier.citedreferenceBradley, A. S., Pearson, A., Sáenz, J. P., & Marx, C. J. ( 2010 ). Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Organic Geochemistry, 41, 1075 – 1081. https://doi.org/10.1016/j.orggeochem.2010.07.003
dc.identifier.citedreferenceBradley, A. S., Swanson, P. K., Muller, E. E. L., Bringel, F., Caroll, S. M., Pearson, A., Vuilleumier, S., & Marx, C. J. ( 2017 ). Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment. PLoS One, 12, e0173323. https://doi.org/10.1371/journal.pone.0173323
dc.identifier.citedreferenceBriggs, D. E. G., & Summons, R. E. ( 2014 ). Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life. BioEssays, 36, 482 – 490. https://doi.org/10.1002/bies.201400010
dc.identifier.citedreferenceAlawi, M., Lipski, A., Sanders, T., Pfeiffer, E. M., & Spieck, E. ( 2007 ). Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. The ISME Journal, 1, 256 – 264. https://doi.org/10.1038/ismej.2007.34
dc.identifier.citedreferenceAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. ( 1990 ). Basic local alignment search tool. Journal of Molecular Biology, 215, 403 – 410. https://doi.org/10.1016/S0022-2836(05)80360-2
dc.identifier.citedreferenceBayer, B., Saito, M. A., McIlvin, M. R., Lücker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., & Santoro, A. E. ( 2021 ). Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. The ISME Journal, 15, 1025 – 1039. https://doi.org/10.1038/s41396-020-00828-3
dc.identifier.citedreferenceBelin, B. J., Busset, N., Giraud, E., Molinaro, A., Silipo, A., & Newman, D. K. ( 2018 ). Hopanoid lipids: From membranes to plant–bacteria interactions. Nature Reviews Microbiology, 16, 304 – 315. https://doi.org/10.1038/nrmicro.2017.173
dc.identifier.citedreferenceBerg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., & Fuchs, G. ( 2010 ). Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 8, 447 – 460. https://doi.org/10.1038/nrmicro2365
dc.identifier.citedreferenceBerndmeyer, C., Thiel, V., Schmale, O., & Blumenberg, M. ( 2013 ). Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea). Organic Geochemistry, 55, 103 – 111. https://doi.org/10.1016/j.orggeochem.2012.11.010
dc.identifier.citedreferenceBerry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., & Jones, A. D. ( 1993 ). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 90, 6091 – 6094. https://doi.org/10.1073/pnas.90.13.6091
dc.identifier.citedreferenceBirgel, D., Peckmann, J., Klautzsch, S., Thiel, V., & Reitner, J. ( 2006 ). Anaerobic and aerobic oxidation of methane at late cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiology Journal, 23, 565 – 577. https://doi.org/10.1080/01490450600897369
dc.identifier.citedreferenceBligh, E. G., & Dyer, W. J. ( 1959 ). A rapid method of total lipid extraction and purification. Biochemistry and Cell Biology, 37, 911 – 917.
dc.identifier.citedreferenceBlumenberg, M., Berndmeyer, C., Moros, M., Muschalla, M., Schmale, O., & Thiel, V. ( 2013 ). Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences, 10, 2725 – 2735. https://doi.org/10.5194/bg-10-2725-2013
dc.identifier.citedreferenceBock, E., Sundermeyer-Klinger, H., & Stackebrandt, E. ( 1983 ). New facultative lithoautotrophic nitrite-oxidizing bacteria. Archives of Microbiology, 136, 281 – 284. https://doi.org/10.1007/BF00425217
dc.identifier.citedreferenceBoddicker, A. M., & Mosier, A. C. ( 2018 ). Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. The ISME Journal, 12, 2864 – 2882. https://doi.org/10.1038/s41396-018-0240-8
dc.identifier.citedreferenceBodlenner, A., Liu, W., Hirsch, G., Schaeffer, P., Blumenberg, M., Lendt, R., Tritsch, D., Michaelis, W., & Rohmer, M. ( 2015 ). C 35 hopanoid side chain biosynthesis: Reduction of ribosylhopane into bacteriohopanetetrol by a cell-free system derived from Methylobacterium organophilum. ChemBioChem, 16, 1764 – 1770.
dc.identifier.citedreferenceBrocks, J. J., & Banfield, J. ( 2009 ). Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nature Reviews. Microbiology, 7, 601 – 609.
dc.identifier.citedreferenceBrocks, J. J., & Pearson, A. ( 2005 ). Building the biomarker tree of life. Reviews in Mineralogy and Geochemistry, 59, 233 – 258. https://doi.org/10.2138/rmg.2005.59.10
dc.identifier.citedreferenceCao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S., & Summons, R. E. ( 2009 ). Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281, 188 – 201. https://doi.org/10.1016/j.epsl.2009.02.012
dc.identifier.citedreferenceCaron, B., Mark, A. E., & Poger, D. ( 2014 ). Some like it hot: The effect of sterols and hopanoids on lipid ordering at high temperature. The Journal of Physical Chemistry Letters, 5, 3953 – 3957. https://doi.org/10.1021/jz5020778
dc.identifier.citedreferenceClose, H. G., Shah, S. R., Ingalls, A. E., Diefendorf, A. F., Brodie, E. L., Hansman, R. L., Freeman, K. H., Aluwihare, L. I., & Pearson, A. ( 2013 ). Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proceedings of the National Academy of Sciences of the United States of America, 110, 12565 – 12570. https://doi.org/10.1073/pnas.1217514110
dc.identifier.citedreferenceCollister, J. W., Summons, R. E., Lichtfouse, E., & Hayes, J. M. ( 1992 ). An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 19, 265 – 276. https://doi.org/10.1016/0146-6380(92)90042-V
dc.identifier.citedreferenceDaims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von, B. M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. ( 2015 ). Complete nitrification by Nitrospira bacteria. Nature, 528, 504 – 509. https://doi.org/10.1038/nature16461
dc.identifier.citedreferenceDaims, H., Lücker, S., & Wagner, M. ( 2016 ). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24, 699 – 712. https://doi.org/10.1016/j.tim.2016.05.004
dc.identifier.citedreferenceDoughty, D. M., Hunter, R. C., Summons, R. E., & Newman, D. K. ( 2009 ). 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: Geobiological implications. Geobiology, 7, 524 – 532.
dc.identifier.citedreferenceDoxey, A. C., Kurtz, D. A., Lynch, M. D., Sauder, L. A., & Neufeld, J. D. ( 2015 ). Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. The ISME Journal, 9, 461 – 471. https://doi.org/10.1038/ismej.2014.142
dc.identifier.citedreferenceElling, F. J., Hemingway, J. D., Evans, T. W., Kharbush, J. J., Spieck, E., Summons, R. E., & Pearson, A. ( 2020 ). Vitamin B 12 -dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification. Proceedings of the National Academy of Sciences of the United States of America, 117, 32996 – 33004.
dc.identifier.citedreferenceElling, F. J., Hemingway, J. D., Kharbush, J. J., Becker, K. W., Polik, C. A., & Pearson, A. ( 2021 ). Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: Insights from Mediterranean sapropel events. Earth and Planetary Science Letters, 571, 117110. https://doi.org/10.1016/j.epsl.2021.117110
dc.identifier.citedreferenceErb, T. J. ( 2011 ). Carboxylases in natural and synthetic microbial pathways. Applied and Environmental Microbiology, 77, 8466 – 8477. https://doi.org/10.1128/AEM.05702-11
dc.identifier.citedreferenceFalkowski, P. G., Barber, R. T., & Smetacek, V. ( 1998 ). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200 – 206. https://doi.org/10.1126/science.281.5374.200
dc.identifier.citedreferenceFischer, W. W., Summons, R. E., & Pearson, A. ( 2005 ). Targeted genomic detection of biosynthetic pathways: Anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33 – 40. https://doi.org/10.1111/j.1472-4669.2005.00041.x
dc.identifier.citedreferenceFüssel, J., Lücker, S., Yilmaz, P., Nowka, B., van Kessel, M. A. H. J., Bourceau, P., Hach, P. F., Littmann, S., Berg, J., Spieck, E., Daims, H., Kuypers, M. M. M., & Lam, P. ( 2017 ). Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Science Advances, 3, e1700807.
dc.identifier.citedreferenceHayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Kurisu, F., Hirono, Y., Nonaka, K., Akiyama, H., Itoh, T., & Takami, H. ( 2017 ). An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. The ISME Journal, 11, 1130 – 1141. https://doi.org/10.1038/ismej.2016.191
dc.identifier.citedreferenceHeal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W., Hmelo, L. R., Moffett, J. W., Devol, A. H., Armbrust, E. V., Stahl, D. A., & Ingalls, A. E. ( 2017 ). Two distinct pools of B 12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 114, 364 – 369.
dc.identifier.citedreferenceIchihara, K., & Fukubayashi, Y. ( 2010 ). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51, 635 – 640. https://doi.org/10.1194/jlr.D001065
dc.identifier.citedreferenceIshii, K., Fujitani, H., Sekiguchi, Y., & Tsuneda, S. ( 2020 ). Physiological and genomic characterization of a new ‘ Candidatus Nitrotoga’ isolate. Environmental Microbiology, 22, 2365 – 2382.
dc.identifier.citedreferenceKasprak, A. H., Sepúlveda, J., Price-Waldman, R., Williford, K. H., Schoepfer, S. D., Haggart, J. W., Ward, P. D., Summons, R. E., & Whiteside, J. H. ( 2015 ). Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology, 43, 307 – 310. https://doi.org/10.1130/G36371.1
dc.identifier.citedreferenceRohmer, M., Bouvier-Nave, P., & Ourisson, G. ( 1984 ). Distribution of hopanoid triterpenes in prokaryotes. Microbiology, 130, 1137 – 1150. https://doi.org/10.1099/00221287-130-5-1137
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772 – 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceKharbush, J. J., Kejriwal, K., & Aluwihare, L. I. ( 2015 ). Distribution and abundance of hopanoid producers in low-oxygen environments of the Eastern Pacific Ocean. Microbial Ecology, 401 – 408.
dc.identifier.citedreferenceKharbush, J. J., Thompson, L. R., Haroon, M. F., Knight, R., & Aluwihare, L. I. ( 2018 ). Hopanoid-producing bacteria in the Red Sea include the major marine nitrite oxidizers. FEMS Microbiology Ecology, 94, fiy063. https://doi.org/10.1093/femsec/fiy063
dc.identifier.citedreferenceKharbush, J. J., Ugalde, J. A., Hogle, S. L., Allen, E. E., & Aluwihare, L. I. ( 2013 ). Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California current. Applied and Environmental Microbiology, 79, 7491 – 7501. https://doi.org/10.1128/AEM.02367-13
dc.identifier.citedreferenceKitzinger, K., Koch, H., Lücker, S., Sedlacek, C. J., Herbold, C., Schwarz, J., Daebeler, A., Mueller, A. J., Lukumbuzya, M., Romano, S., Leisch, N., Karst, S. M., Kirkegaard, R., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. ( 2018 ). Characterization of the first “ Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. MBio 9, e01186-18.
dc.identifier.citedreferenceKoops, H.-P., & Pommerening-Röser, A. ( 2015 ). The lithoautotrophic ammonia-oxidizing bacteria. In W. B. Whitman (Ed.), Bergey’s manual of systematics of archaea and bacteria (pp. 1 – 17 ). Jonh Wiley & Sons Inc.
dc.identifier.citedreferenceKoops, H.-P., Purkhold, U., Pommerening-Röser, A., Timmermann, G., & Wagner, M. ( 2006 ). The lithoautotrophic ammonia-oxidizing bacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E.   Stackebrandt (Eds.), The prokaryotes (pp. 778 – 811 ). Springer New York.
dc.identifier.citedreferenceKuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., & Sinninghe Damsté, J. S. ( 2001 ). Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science, 293, 92 – 95. https://doi.org/10.1126/science.1058424
dc.identifier.citedreferenceKuypers, M. M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., & Sinninghe Damsté, J. S. ( 2002 ). Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 211 – 234. https://doi.org/10.1016/S0031-0182(02)00301-2
dc.identifier.citedreferenceKuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E., & Sinninghe Damsté, J. S. ( 2004 ). N 2 -fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32, 853. https://doi.org/10.1130/G20458.1
dc.identifier.citedreferenceLengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R., Talbot, H. M., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Damsté, J. S. S., & Pancost, R. D. ( 2019 ). Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM). Global Biogeochemical Cycles, 33, 1715 – 1732. https://doi.org/10.1029/2019GB006282
dc.identifier.citedreferenceLetunic, I., & Bork, P. ( 2016 ). Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, W242 – W245. https://doi.org/10.1093/nar/gkw290
dc.identifier.citedreferenceLiu, W., Sakr, E., Schaeffer, P., Talbot, H. M., Donisi, J., Härtner, T., Kannenberg, E., Takano, E., & Rohmer, M. ( 2014 ). Ribosylhopane, a novel bacterial hopanoid, as precursor of C 35 bacteriohopanepolyols in Streptomyces coelicolor A3(2). ChemBioChem, 15, 2156 – 2161.
dc.identifier.citedreferenceLücker, S., Nowka, B., Rattei, T., Spieck, E., & Daims, H. ( 2013 ). The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Frontiers in Microbiology, 4, 27.
dc.identifier.citedreferenceLücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damsté, J. S. S., Spieck, E., Le Paslier, D., & Daims, H. ( 2010 ). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107, 13479 – 13484. https://doi.org/10.1073/pnas.1003860107
dc.identifier.citedreferenceLunau, M., Lemke, A., Walther, K., Martens-Habbena, W., & Simon, M. ( 2005 ). An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environmental Microbiology, 7, 961 – 968. https://doi.org/10.1111/j.1462-2920.2005.00767.x
dc.identifier.citedreferenceMangiarotti, A., Genovese, D. M., Naumann, C. A., Monti, M. R., & Wilke, N. ( 2019 ). Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochimica Et Biophysica Acta (BBA) – Biomembranes, 1861, 183060.
dc.identifier.citedreferenceMatys, E. D., Sepúlveda, J., Pantoja, S., Lange, C. B., Caniupán, M., Lamy, F., & Summons, R. E. ( 2017 ). Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile. Geobiology, 15, 844 – 857. https://doi.org/10.1111/gbi.12250
dc.identifier.citedreferenceMcNevin, D. B., Badger, M. R., Whitney, S. M., von Caemmerer, S., Tcherkez, G. G. B., & Farquhar, G. D. ( 2007 ). Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. Journal of Biological Chemistry, 282, 36068 – 36076. https://doi.org/10.1074/jbc.M706274200
dc.identifier.citedreferenceMenzel, D., Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. ( 2006 ). Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 1 – 15. https://doi.org/10.1016/j.palaeo.2006.01.002
dc.identifier.citedreferenceMincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., & DeLong, E. F. ( 2007 ). Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental Microbiology, 9, 1162 – 1175. https://doi.org/10.1111/j.1462-2920.2007.01239.x
dc.identifier.citedreferenceMook W. G., Bommerson J. C., & Staverman W. H. ( 1974 ). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169 – 176. http://dx.doi.org/10.1016/0012-821x(74)90078-8
dc.identifier.citedreferenceMueller, A. J., Jung, M.-Y., Strachan, C. R., Herbold, C. W., Kirkegaard, R. H., Wagner, M., & Daims, H. ( 2020 ). Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. The ISME Journal, 15, 732 – 745.
dc.identifier.citedreferenceNaafs, B. D. A., Monteiro, F. M., Pearson, A., Higgins, M. B., Pancost, R. D., & Ridgwell, A. ( 2019 ). Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proceedings of the National Academy of Sciences of the United States of America, 116, 24979 – 24984. https://doi.org/10.1073/pnas.1905553116
dc.identifier.citedreferenceNewman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H., & Pearson, A. ( 2016 ). Cellular and molecular biological approaches to interpreting ancient biomarkers. Annual Review of Earth and Planetary Sciences, 44, 493 – 522. https://doi.org/10.1146/annurev-earth-050212-123958
dc.identifier.citedreferenceOurisson, G., & Albrecht, P. ( 1992 ). Hopanoids. 1. Geohopanoids: The most abundant natural products on Earth? Accounts of Chemical Research, 25, 398 – 402.
dc.identifier.citedreferenceOurisson, G., & Rohmer, M. ( 1992 ). Hopanoids. 2. Biohopanoids: A novel class of bacterial lipids. Accounts of Chemical Research, 25, 403 – 408. https://doi.org/10.1021/ar00021a004
dc.identifier.citedreferenceOurisson, G., Rohmer, M., & Poralla, K. ( 1987 ). Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41, 301 – 333. https://doi.org/10.1146/annurev.mi.41.100187.001505
dc.identifier.citedreferencePachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R., Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G. J., & Stepanauskas, R. ( 2017 ). Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 358, 1046 – 1051. https://doi.org/10.1126/science.aan8260
dc.identifier.citedreferencePalomo, A., Pedersen, A. G., Fowler, S. J., Dechesne, A., Sicheritz-Pontén, T., & Smets, B. F. ( 2018 ). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 12, 1779. https://doi.org/10.1038/s41396-018-0083-3
dc.identifier.citedreferencePearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W., & Higgins, M. B. ( 2007 ). Novel hopanoid cyclases from the environment. Environmental Microbiology, 9, 2175 – 2188. https://doi.org/10.1111/j.1462-2920.2007.01331.x
dc.identifier.citedreferencePicone, N., Pol, A., Mesman, R., van Kessel, M. A. H. J., Cremers, G., van Gelder, A. H., van Alen, T. A., Jetten, M. S. M., Lücker, S., & Op den Camp, H. J. M. ( 2020 ). Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. The ISME Journal, 15, 1150 – 1164.
dc.identifier.citedreferencePoger, D., & Mark, A. E. ( 2013 ). The relative effect of sterols and hopanoids on lipid bilayers: When comparable is not identical. The Journal of Physical Chemistry B, 117, 16129 – 16140. https://doi.org/10.1021/jp409748d
dc.identifier.citedreferencePolik, C. A., Elling, F. J., & Pearson, A. ( 2018 ). Impacts of paleoecology on the TEX 86 sea surface temperature proxy in the pliocene-pleistocene Mediterranean Sea. Paleoceanography and Paleoclimatology, 33, 1472 – 1489.
dc.identifier.citedreferencePreuß, A., Schauder, R., Fuchs, G., & Stichler, W. ( 1989 ). Carbon isotope fractionation by autotrophic bacteria with three different CO 2 fixation pathways. Zeitschrift für Naturforschung, 44, 397 – 402.
dc.identifier.citedreferenceQuandt, L., Gottschalk, G., Ziegler, H., & Stichler, W. ( 1977 ). Isotope discrimination by photosynthetic bacteria. FEMS Microbiology Letters, 1, 125 – 128. https://doi.org/10.1111/j.1574-6968.1977.tb00596.x
dc.identifier.citedreferenceQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. ( 2013 ). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590 – D596.
dc.identifier.citedreferenceRashby, S. E., Sessions, A. L., Summons, R. E., & Newman, D. K. ( 2007 ). Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences of the United States of America, 104, 15099 – 15104. https://doi.org/10.1073/pnas.0704912104
dc.identifier.citedreferenceRicci, J. N., Coleman, M. L., Welander, P. V., Sessions, A. L., Summons, R. E., Spear, J. R., & Newman, D. K. ( 2013 ). Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. The ISME Journal, 8, 1 – 10.
dc.identifier.citedreferenceRicci, J. N., Coleman, M. L., Welander, P. V., Sessions, A. L., Summons, R. E., Spear, J. R., & Newman, D. K. ( 2014 ). Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. The ISME Journal, 8, 675 – 684. https://doi.org/10.1038/ismej.2013.191
dc.identifier.citedreferenceRicci, J. N., Michel, A. J., & Newman, D. K. ( 2015 ). Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology, 13, 267 – 277. https://doi.org/10.1111/gbi.12129
dc.identifier.citedreferenceRichardson, T. L., & Jackson, G. A. ( 2007 ). Small phytoplankton and carbon export from the surface ocean. Science, 315, 838 – 840. https://doi.org/10.1126/science.1133471
dc.identifier.citedreferenceRush, D., Osborne, K. A., Birgel, D., Kappler, A., Hirayama, H., Peckmann, J., Poulton, S. W., Nickel, J. C., Mangelsdorf, K., Kalyuzhnaya, M., Sidgwick, F. R., & Talbot, H. M. ( 2016 ). The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems. PLoS One, 11, 1 – 27. https://doi.org/10.1371/journal.pone.0165635
dc.identifier.citedreferenceSáenz, J. P. ( 2010 ). Exploring the distribution and physiological roles of bacterial membrane lipids in the marine environment (PhD Thesis).
dc.identifier.citedreferenceSáenz, J. P., Sezgin, E., Schwille, P., & Simons, K. ( 2012 ). Functional convergence of hopanoids and sterols in membrane ordering. Proceedings of the National Academy of Sciences of the United States of America, 109, 14236 – 14240. https://doi.org/10.1073/pnas.1212141109
dc.identifier.citedreferenceSáenz, J. P., Wakeham, S. G., Eglinton, T. I., & Summons, R. E. ( 2011 ). New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environments. Organic Geochemistry, 42, 1351 – 1362. https://doi.org/10.1016/j.orggeochem.2011.08.016
dc.identifier.citedreferenceSakata, S., Hayes, J. M., Rohmer, M., Hooper, A. B., & Seemann, M. ( 2008 ). Stable carbon-isotopic compositions of lipids isolated from the ammonia-oxidizing chemoautotroph Nitrosomonas europaea. Organic Geochemistry, Stable Isotopes in Biogeosciences (II), 39, 1725 – 1734. https://doi.org/10.1016/j.orggeochem.2008.08.005
dc.identifier.citedreferenceSantoro, A. E., Casciotti, K. L., & Francis, C. A. ( 2010 ). Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environmental Microbiology, 12, 1989 – 2006. https://doi.org/10.1111/j.1462-2920.2010.02205.x
dc.identifier.citedreferenceSato, S., Kudo, F., Rohmer, M., & Eguchi, T. ( 2020 ). Characterization of radical SAM adenosylhopane synthase, HpnH, which catalyzes the 5′-deoxyadenosyl radical addition to diploptene in the biosynthesis of C 35 bacteriohopanepolyols. Angewandte Chemie International Edition, 59, 237 – 241.
dc.identifier.citedreferenceSchmerk, C. L., Welander, P. V., Hamad, M. A., Bain, K. L., Bernards, M. A., Summons, R. E., & Valvano, M. A. ( 2015 ). Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environmental Microbiology, 17, 735 – 750.
dc.identifier.citedreferenceSchopfer, F. J., & Khoo, N. K. H. ( 2019 ). Nitro-fatty acid logistics: Formation, biodistribution, signaling, and pharmacology. Trends in Endocrinology & Metabolism, 30, 505 – 519. https://doi.org/10.1016/j.tem.2019.04.009
dc.identifier.citedreferenceSeemann, M., Bisseret, P., Tritz, J.-P., Hooper, A. B., & Rohmer, M. ( 1999 ). Novel bacterial triterpenoids of the hopane series from Nitrosomonas europaea and their significance for the formation of the C 35 bacteriohopane skeleton. Tetrahedron Letters, 40, 1681 – 1684. https://doi.org/10.1016/S0040-4039(99)00064-7
dc.identifier.citedreferenceSirevåg, R., Buchanan, B. B., Berry, J. A., & Troughton, J. H. ( 1977 ). Mechanisms of CO 2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Archives of Microbiology, 112, 35 – 38.
dc.identifier.citedreferenceSohlenkamp, C., & Geiger, O. ( 2016 ). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40, 133 – 159. https://doi.org/10.1093/femsre/fuv008
dc.identifier.citedreferenceSorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A., Kleerebezem, R., Rijpstra, W. I. C., Damsté, J. S. S., Le, P. D., Muyzer, G., Wagner, M., van Loosdrecht, M. C. M., & Daims, H. ( 2012 ). Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME Journal, 6, 2245 – 2256. https://doi.org/10.1038/ismej.2012.70
dc.identifier.citedreferenceSpencer-Jones, C. L. ( 2015 ). Novel concepts derived from microbial biomarkers in the Congo System: Implications for continental methane cycling (PhD Thesis).
dc.identifier.citedreferenceSpieck, E., & Bock, E. ( 2005 ). The lithoautotrophic nitrite-oxidizing bacteria. In W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Eds.), Bergey’s manual of systematics of archaea and bacteria (pp. 1 – 10 ). John Wiley & Sons Ltd.
dc.identifier.citedreferenceSpieck, E., & Lipski, A. ( 2011 ). Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. In M. G. Klotz (Ed.), Research on nitrification and related processes, part A, Methods in enzymology (pp. 109 – 130 ). Elsevier.
dc.identifier.citedreferenceSpieck, E., Sass, K., Keuter, S., Hirschmann, S., Spohn, M., Indenbirken, D., Kop, L. F. M., Lücker, S., & Giaveno, A. ( 2020 ) Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea. Frontiers in Microbiology 11, 1522.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.