Show simple item record

Extending the susceptible-exposed-infected-removed (SEIR) model to handle the false negative rate and symptom-based administration of COVID-19 diagnostic tests: SEIR-fansy

dc.contributor.authorBhaduri, Ritwik
dc.contributor.authorKundu, Ritoban
dc.contributor.authorPurkayastha, Soumik
dc.contributor.authorKleinsasser, Michael
dc.contributor.authorBeesley, Lauren J.
dc.contributor.authorMukherjee, Bhramar
dc.contributor.authorDatta, Jyotishka
dc.date.accessioned2022-05-06T17:30:35Z
dc.date.available2023-07-06 13:30:32en
dc.date.available2022-05-06T17:30:35Z
dc.date.issued2022-06-15
dc.identifier.citationBhaduri, Ritwik; Kundu, Ritoban; Purkayastha, Soumik; Kleinsasser, Michael; Beesley, Lauren J.; Mukherjee, Bhramar; Datta, Jyotishka (2022). "Extending the susceptible-exposed-infected-removed (SEIR) model to handle the false negative rate and symptom-based administration of COVID-19 diagnostic tests: SEIR-fansy." Statistics in Medicine 41(13): 2317-2337.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/172355
dc.publisherWiley Periodicals, Inc.
dc.subject.otherundetected infections
dc.subject.othercompartmental models
dc.subject.otherinfection fatality rate
dc.subject.otherR package SEIRfansy
dc.subject.otherreproduction number
dc.subject.otherselection bias
dc.subject.othersensitivity
dc.titleExtending the susceptible-exposed-infected-removed (SEIR) model to handle the false negative rate and symptom-based administration of COVID-19 diagnostic tests: SEIR-fansy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172355/1/sim9357-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172355/2/sim9357_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172355/3/sim9357.pdf
dc.identifier.doi10.1002/sim.9357
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceBhattacharyya R, Kundu R, Bhaduri R, et al. Incorporating false negative tests in epidemiological models for SARS-CoV-2 transmission and reconciling with seroprevalence estimates. Sci Rep. 2021; 11 ( 1 ): 1 - 14.
dc.identifier.citedreferenceKrüttgen A, Cornelissen CG, Dreher M, Hornef MW, Imöhl M, Kleines M. Comparison of the SARS-CoV-2 rapid antigen test to the real star Sars-CoV-2 RT PCR kit. J Virolog Methods. 2021; 288: 114024.
dc.identifier.citedreferenceMurray CJ, IHME COVID-19 health service utilization forecasting team. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. MedRxiv; 2020. 10.1101/2020.03.27.20043752
dc.identifier.citedreferenceFlaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020; 1 - 5. doi: 10.1038/s41586-020-2405-7
dc.identifier.citedreferenceTang L, Zhou Y, Wang L, et al. A review of multi-compartment infectious disease models. Int Stat Rev. 2020. doi: 10.1111/insr.12402
dc.identifier.citedreferenceSong PX, Wang L, Zhou Y et al. An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China. J Data Sci 2021; 18 ( 3 ): 409 - 432. http://dx.doi.org/10.6339/jds.202007_18(3).0003
dc.identifier.citedreferenceKermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1927; 115 ( 772 ): 700 - 721. http://dx.doi.org/10.1098/rspa.1927.0118
dc.identifier.citedreferenceHao X, Cheng S, Wu D, Wu T, Lin X, Wang C. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature. 2020; 1 - 5. doi: 10.1038/s41586-020-2554-8
dc.identifier.citedreferenceBai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020; 323 ( 14 ): 1406 - 1407. doi: 10.1001/jama.2020.2565
dc.identifier.citedreferenceTong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang province, China, 2020. Emerg Infect Diseases. 2020; 26 ( 5 ): 1052. doi: 10.3201/eid2605.200198
dc.identifier.citedreferenceGriffith GJ, Morris TT, Tudball MJ, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nature Commun. 2020; 11 ( 1 ). doi: 10.1038/s41467-020-19478-2
dc.identifier.citedreferenceBeesley LJ, Mukherjee B. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification. medRxiv; 2019. 10.1101/2019.12.26.19015859
dc.identifier.citedreferenceDempsey W. The hypothesis of testing: paradoxes arising out of reported coronavirus case-counts; arXiv preprint arXiv:2005.10425.
dc.identifier.citedreferenceAron JL, Schwartz IB. Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol. 1984; 110 ( 4 ): 665 - 679.
dc.identifier.citedreferenceLi MY, Muldowney JS. Global stability for the SEIR model in epidemiology. Math Biosci. 1995; 125 ( 2 ): 155 - 164.
dc.identifier.citedreferenceGamio L & Glanz J Just how big could India’s true Covid toll be? The New York Times; 2021.
dc.identifier.citedreferenceMurhekar MV, Clapham H. COVID-19 serosurveys for public health decision making. Lancet Global Health. 2021; 9 ( 5 ): e559 - e560.
dc.identifier.citedreferencePurkayastha S, Bhattacharyya R, Bhaduri R, et al. A comparison of five epidemiological models for transmission of SARS-CoV-2 in India. BMC Infect Dis. 2021; 21 ( 1 ): 1 - 23.
dc.identifier.citedreferenceWang L, Zhou Y, He J, et al. An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China. J Data Sci. 2020; 18 ( 3 ): 409 - 432.
dc.identifier.citedreferenceXin H, Li Y, Wu P, et al. Estimating the latent period of coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021.
dc.identifier.citedreferenceAbbott S, Sherratt K, Gerstung M, Funk S. Estimation of the test to test distribution as a proxy for generation interval distribution for the Omicron variant in England. medRxiv; 2022. 10.1101/2022.01.08.22268920
dc.identifier.citedreferenceZou Y, Heath WP. Conditions for attaining the global minimum in maximum likelihood system identification. IFAC Proc Vol. 2009; 42 ( 10 ): 1110 - 1115.
dc.identifier.citedreferenceHorbelt W, Timmer J, Voss H. Parameter estimation in nonlinear delayed feedback systems from noisy data. Phys Lett A. 2002; 299: 513 - 521. doi: 10.1016/S0375-9601(02)00748-X
dc.identifier.citedreferenceGelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992; 7 ( 4 ): 457 - 472.
dc.identifier.citedreferenceDespotovic M, Nedic V, Despotovic D, Cvetanovic S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew Sustain Energy Rev. 2016; 56: 246 - 260. http://dx.doi.org/10.1016/j.rser.2015.11.058
dc.identifier.citedreferenceSethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. Jama. 2020.
dc.identifier.citedreferenceZimmermann L, Bhattacharya S, Purkayastha S, et al. SARS-CoV-2 infection fatality rates in India: systematic review, meta-analysis and model-based estimation. Stud Microecon. 2021; 23210222211054324.
dc.identifier.citedreferencePurkayastha S, Kundu R, Bhaduri R, et al. Estimating the wave 1 and wave 2 infection fatality rates from SARS-CoV-2 in India. medRxiv; 2021.
dc.identifier.citedreferenceZimmermann LV, Salvatore M, Babu GR, Mukherjee B. Estimating COVID-19- related mortality in India: an epidemiological challenge with insufficient data. Am J Public Health. 2021; 111 ( S2 ): S59 - S62.
dc.identifier.citedreferenceRay D, Salvatore M, Bhattacharyya R, et al. Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms. Harvard Data Sci Rev. 2020. https://hdsr.mitpress.mit.edu/pub/r1qq01kw10.1162/99608f92.60e08ed5
dc.identifier.citedreferenceBeretta E, Breda D. An SEIR epidemic model with constant latency time and infectious period. Math Biosci Eng. 2011; 8 ( 4 ): 931.
dc.identifier.citedreferenceSharma VK, Nigam U, Sharma VK, Nigam U. Modeling and Forecasting of COVID-19 Growth Curve in India. Transactions of the Indian National Academy of Engineering. 2020;5:(4):697–710. http://dx.doi.org/10.1007/s41403-020-00165-z
dc.identifier.citedreferenceJohns Hopkins University. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU); 2020. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda759 4740fd40299423467b48e9ecf6. Accessed April 7, 2020.
dc.identifier.citedreferenceSharfstein JM, Becker SJ, Mello MM. Diagnostic testing for the novel coronavirus. Jama. 2020; 323 ( 15 ): 1437 - 1438. doi: 10.1001/jama.2020.3864
dc.identifier.citedreferenceAi T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020; 200642. doi: 10.1148/radiol.2020200642
dc.identifier.citedreferenceWest CP, Montori VM, Sampathkumar P. COVID-19 testing: the threat of false-negative results. Mayo Clinic Proceedings. Vol 95. 2020 ( 6 ): 1127 - 1129.
dc.identifier.citedreferenceYang Y, Yang M, Yuan J, et al. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation. 2020; 1 ( 3 ): 100061. doi: 10.1016/j.xinn.2020.100061
dc.identifier.citedreferenceBurstyn I, Goldstein ND, Gustafson P. Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA. BMC Med Res Methodol. 2020; 20:( 1 ). http://dx.doi.org/10.1186/s12874-020-01037-4
dc.identifier.citedreferenceArevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. medRxiv; 2020. 10.1101/2020.04.16.20066787
dc.identifier.citedreferenceWoloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection–challenges and implications. New Engl J Med. 2020. doi: 10.1056/NEJMp2015897
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.