Show simple item record

Computational Molecular Design for Developing Metal-Free Organic Emissive Materials

dc.contributor.authorAnsari, Ramin
dc.date.accessioned2022-05-25T15:27:26Z
dc.date.available2022-05-25T15:27:26Z
dc.date.issued2022
dc.date.submitted2022
dc.identifier.urihttps://hdl.handle.net/2027.42/172700
dc.description.abstractOrganic emissive materials have gained a great deal of attention due to their prominence in electronic displays, solid-state lighting, bio-probes for imaging, and sensor applications. Organic materials exhibiting thermally activated delayed fluorescence (TADF) can fully utilize triplet excitons, but their implementation is limited due to broad emission spectra (color impurity), which are principally attributed to the torsional mobility about the twist angle between the donor and acceptor groups. Our methodical computational and experimental investigation reveals that it is the dramatic change of electron configuration between ground and charge-transfer excited states that causes the broad emission. For compounds with the same rotational barrier the FWHM increases significantly when enhancing the charge transfer character. Conversely, when increasing rotational restrictions, emitters show minimal change in their FWHM. Accordingly, to constrict emission broadening it is preferable to control the charge-transfer character of emitter molecules by introducing chromophores with localized emission (LE) character, exhibiting minimal change in electron configuration upon emission. Besides TADF materials, metal-organic phosphors can also theoretically realize 100% internal quantum efficiencies, but they suffer from stability issues as a result of the weak metal–ligand bonds. Hence, there is interest in developing all-organic phosphorescent OLEDs. The elimination of the heavy metals brings with it new challenges, such as weak spin–orbit coupling interactions and non–radiative decays due to molecular vibrations. In all-organic systems, the enhanced spin-orbit coupling necessary for phosphorescence is thought to be due to the halogen bonding. To elucidate the underlying mechanism, the electronic and optical properties of purely organic phosphor candidates were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT). Accordingly, iodine forms the strongest halogen bond and fluorine forms the weakest. The strong halogen bonding in crystalline Br and I derivatives more effectively suppresses vibrations and prevents non–radiative decays compared to F and Cl derivatives. Moreover, for heavy atoms, spin-orbit coupling is large, thus augmenting spin flipping. Consequently, triplet-to-singlet transitions are most common in molecules containing iodine and bromine. White purely organic light-emitting materials have attracted attention for their practicality in many applications such as lighting, sensing, and imaging. Commonly reported designs combine multiple emissive layers where two or more materials simultaneously emit electromagnetic radiation that together is perceived as white. Led by computation, we have developed a fluorine-based molecular framework for white OLEDs in which fluorescence and phosphorescence from a single molecule are combined, achieving white emission at decreased device fabrication cost. A rigid molecular structure is essential for efficient phosphorescence emission so that the vibration is suppressed. Fluorescence emission can be enhanced by suppressing the S1 to T1 El-Sayed enhanced intersystem crossing. Finally, we developed a graph-based machine learning (ML) model to predict the solvation free energies from solvent-solute pair-wise interactions. To this end, we explore two novel deep learning architectures: message passing neural network and graph attention network. The ML methods yield more accurate predictions of solvation free energies than state of the art deep learning or quantum mechanical methods, at lower computational costs. The ability to predict chemical properties is important for developing new materials with specific properties, especially for OLED applications. Reliable predictive models allow for efficiently screening candidate organic molecules, and accelerate materials design and development.
dc.language.isoen_US
dc.subjectOrganic Emissive Materials
dc.subjectThermally Activated Delayed Fluorescence
dc.subjectComputational Molecular Design
dc.subjectMachine Learning for Material Property Prediction
dc.titleComputational Molecular Design for Developing Metal-Free Organic Emissive Materials
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberKieffer, John
dc.contributor.committeememberKim, Jinsang
dc.contributor.committeememberGoldsmith, Bryan
dc.contributor.committeememberZiff, Robert M
dc.contributor.committeememberZimmerman, Paul
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172700/1/raminans_1.pdf
dc.identifier.doihttps://dx.doi.org/10.7302/4729
dc.identifier.orcid0000-0002-1844-7762
dc.identifier.name-orcidAnsari, Ramin; 0000-0002-1844-7762en_US
dc.working.doi10.7302/4729en
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.