Show simple item record

Hydrazone and Oxime Olefination via Ruthenium Alkylidenes

dc.contributor.authorNasrallah, Daniel J.
dc.contributor.authorZehnder, Troy E.
dc.contributor.authorLudwig, Jacob R.
dc.contributor.authorSteigerwald, Daniel C.
dc.contributor.authorKiernicki, John J.
dc.contributor.authorSzymczak, Nathaniel K.
dc.contributor.authorSchindler, Corinna S.
dc.date.accessioned2022-06-01T20:28:26Z
dc.date.available2023-06-01 16:28:21en
dc.date.available2022-06-01T20:28:26Z
dc.date.issued2022-05-23
dc.identifier.citationNasrallah, Daniel J.; Zehnder, Troy E.; Ludwig, Jacob R.; Steigerwald, Daniel C.; Kiernicki, John J.; Szymczak, Nathaniel K.; Schindler, Corinna S. (2022). "Hydrazone and Oxime Olefination via Ruthenium Alkylidenes." Angewandte Chemie 134(22): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/172797
dc.description.abstractWe describe the development of an efficient method for the olefination of hydrazones and oximes. The key design approach that enables this transformation is tuning of the energy/polarity of C=N π-bonds by employing heteroatom functionalities (NR2, OR). The resulting hydrazones or oximes facilitate olefination with ruthenium alkylidenes. Through this approach, we show that air-stable, commercially available ruthenium alkylidenes provide access to functionalized alkenes (20 examples) in ring-closing reactions with yields up to 88 %.Olefination of carbon–heteroatom double bonds is a powerful approach to access highly functionalized olefins. An approach is reported here that uses air-stable and commercially available ruthenium alkylidenes to promote C=N/olefin ring closure. The enabling strategy for this reaction is the use of hydrazones and oximes as readily accessible substrates that preferentially react with ruthenium alkylidenes, even in the presence of carbonyl groups.
dc.publisherWiley
dc.subject.otherRuthenium
dc.subject.otherOximes
dc.subject.otherAlkylidenes
dc.subject.otherOlefination
dc.subject.otherHydrazones
dc.titleHydrazone and Oxime Olefination via Ruthenium Alkylidenes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172797/1/ange202112101-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172797/2/ange202112101_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172797/3/ange202112101.pdf
dc.identifier.doi10.1002/ange.202112101
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceE. M. Leitao, S. R. Dubberley, W. E. Piers, Q. Wu, R. McDonald, Chem. Eur. J. 2008, 14, 11565 – 11572;
dc.identifier.citedreferenceJ. I. du Toit, C. G. C. E. van Sittert, H. C. M. Vosloo, Monatsh. Chem. 2015, 146, 1115 – 1129;
dc.identifier.citedreferenceC. H. Suresh, N. Koga, Organometallics 2004, 23, 76 – 80.
dc.identifier.citedreferenceK. Yamamoto, C. P. Gordon, W.-C. Liao, C. Copéret, C. Raynaud, O. Eisenstein, Angew. Chem. Int. Ed. 2017, 56, 10127 – 10131; Angew. Chem. 2017, 129, 10261 – 10265.
dc.identifier.citedreferenceC. P. Gordon, C. Raynaud, R. A. Andersen, C. Copéret, O. Eisenstein, Acc. Chem. Res. 2019, 52, 2278 – 2289.
dc.identifier.citedreferenceP. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi, J. Org. Chem. 2012, 77, 3149 – 3158.
dc.identifier.citedreferenceJ. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem. Int. Ed. 2002, 41, 4035 – 4037; Angew. Chem. 2002, 114, 4207 – 4209.
dc.identifier.citedreferenceS. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168 – 8179.
dc.identifier.citedreferenceG. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746 – 1787.
dc.identifier.citedreferenceSee Supporting Information for details.
dc.identifier.citedreferenceDecomposition of phosphine-containing ruthenium alkylidenes has been demonstrated to occur at elevated temperatures, which is consistent with decreased reactivity of G2 compared to HG-2. For details, see:
dc.identifier.citedreferenceS. H. Hong, A. G. Wenzel, T. T. Salguero, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2007, 129, 7961 – 7968;
dc.identifier.citedreferenceR. H. Grubbs, Tetrahedron 2004, 60, 7117 – 7140.
dc.identifier.citedreferenceE. M. Leitao, W. E. Piers, M. Parvez, Can. J. Chem. 2013, 91, 935 – 942.
dc.identifier.citedreferenceFor solvent compatibility of metathesis reactions, see:
dc.identifier.citedreferenceC. S. Adjiman, A. J. Clarke, G. Cooper, P. C. Taylor, Chem. Commun. 2008, 2806 – 2808;
dc.identifier.citedreferenceM. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543 – 6554;
dc.identifier.citedreferenceK. Skowerski, J. Białecki, A. Tracz, T. K. Olszewski, Green Chem. 2014, 16, 1125 – 1130.
dc.identifier.citedreferenceM. B. Dinger, J. C. Mol, Eur. J. Inorg. Chem. 2003, 2827 – 2833.
dc.identifier.citedreferenceA. Young, M. A. Vincent, I. H. Hillier, J. M. Percy, T. Tuttle, Dalton Trans. 2014, 43, 8493 – 8498.
dc.identifier.citedreferenceReporting NMR yields for previously characterized compounds in the metathesis field is standard. For representative examples, see:
dc.identifier.citedreferenceA. E. Samkian, Y. Xu, S. C. Virgil, K.-Y. Yoon, R. H. Grubbs, Organometallics 2020, 39, 495 – 499;
dc.identifier.citedreferenceW. C. P. Tsang, R. R. Schrock, A. H. Hoveyda, Organometallics 2001, 20, 5658 – 5669;
dc.identifier.citedreferenceW. C. P. Tsang, K. C. Hultzsch, J. B. Alexander, P. J. Bonitatebus, R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125, 2652 – 2666;
dc.identifier.citedreferenceC. S. Higman, D. L. Nascimento, B. J. Ireland, S. Audörsch, G. A. Bailey, R. McDonald, D. E. Fogg, J. Am. Chem. Soc. 2018, 140, 1604 – 1607;
dc.identifier.citedreferenceV. Paradiso, V. Bertolasi, C. Costabile, T. Caruso, M. Dąbrowski, K. Grela, F. Grisi, Organometallics 2017, 36, 3692 – 3708;
dc.identifier.citedreferenceC. Theunissen, M. A. Ashley, T. Rovis, J. Am. Chem. Soc. 2019, 141, 6791 – 6796.
dc.identifier.citedreferenceA. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Chem. Eur. J. 2001, 7, 4811 – 4820.
dc.identifier.citedreferenceK. A. Bahou, D. C. Braddock, A. G. Meyer, G. P. Savage, Org. Lett. 2017, 19, 5332 – 5335.
dc.identifier.citedreferenceK. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597 – 601.
dc.identifier.citedreferenceZ. Lysenko, B. R. Maughon, J. Bicerano, K. A. Burdett, C. P. Christenson, C. H. Cummins, M. L. Dettloff, A. K. Schrock, P. J. Thomas, R. D. Varjian, J. E. White, J. M. Maher, Integrated Chemical Processes for Industrial Utilization of Seed Oils, US7745652B2, 2010.
dc.identifier.citedreferenceW. Obrecht, J. M. Müller, O. Nuyken, M. Kellner, Process for the Metathetic Degradation of Nitrile Rubbers, US7662889B2, 2010.
dc.identifier.citedreferenceM. H. Davidson, J. G. Robinson, Expert Opin. Pharmacother. 2006, 7, 1701 – 1714.
dc.identifier.citedreferenceJ. Kidd, Nat. Rev. Drug Discovery 2006, 5, 813 – 814.
dc.identifier.citedreferenceP. M. LoRusso, D. Weiss, E. Guardino, S. Girish, M. X. Sliwkowski, Clin. Cancer Res. 2011, 17, 6437 – 6447.
dc.identifier.citedreferenceA. K. Ghosh, X. Cheng, Org. Lett. 2011, 13, 4108 – 4111.
dc.identifier.citedreferenceK. Komine, Y. Urayama, T. Hosaka, Y. Yamashita, H. Fukuda, S. Hatakeyama, J. Ishihara, Org. Lett. 2020, 22, 5046 – 5050.
dc.identifier.citedreferenceG. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44 – 57.
dc.identifier.citedreferenceE. Vedejs, C. F. Marth, J. Am. Chem. Soc. 1988, 110, 3948 – 3958.
dc.identifier.citedreferenceM. Julia, J.-M. Paris, Tetrahedron Lett. 1973, 14, 4833 – 4836.
dc.identifier.citedreferenceJ. Pospíšil, T. Pospíšil, I. E. Markó, Org. Lett. 2005, 7, 2373 – 2376.
dc.identifier.citedreferenceC. Aïssa, J. Org. Chem. 2006, 71, 360 – 363.
dc.identifier.citedreferenceF. N. Tebbe, G. W. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611 – 3613.
dc.identifier.citedreferenceF. N. Tebbe, G. W. Parshall, D. W. Ovenall, J. Am. Chem. Soc. 1979, 101, 5074 – 5075.
dc.identifier.citedreferenceN. A. Petasis, E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392 – 6394.
dc.identifier.citedreferenceB. Breit, Angew. Chem. Int. Ed. 1998, 37, 453 – 456; Angew. Chem. 1998, 110, 467 – 470.
dc.identifier.citedreferenceHandbook of Metathesis (Eds.: R. H. Grubbs, A. G. Wenzel ), Wiley, Hoboken, 2015.
dc.identifier.citedreferenceA. K. Griffith, C. M. Vanos, T. H. Lambert, J. Am. Chem. Soc. 2012, 134, 18581 – 18584.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Albright, A. J. Davis, J. L. Gomez-Lopez, H. L. Vonesh, P. K. Quach, T. H. Lambert, C. S. Schindler, Chem. Rev. 2021, 121, 9359 – 9406;
dc.identifier.citedreferenceH. Albright, P. S. Riehl, C. C. McAtee, J. P. Reid, J. R. Ludwig, L. A. Karp, P. M. Zimmerman, M. S. Sigman, C. S. Schindler, J. Am. Chem. Soc. 2019, 141, 1690 – 1700.
dc.identifier.citedreferenceV. Ramesh Naidu, J. Bah, J. Franzén, Eur. J. Org. Chem. 2015, 1834 – 1839.
dc.identifier.citedreferenceU. P. N. Tran, G. Oss, D. P. Pace, J. Ho, T. V. Nguyen, Chem. Sci. 2018, 9, 5145 – 5151.
dc.identifier.citedreferenceG. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 3800 – 3801.
dc.identifier.citedreferenceP. Chakraborty, S. C. Roy, J. Chem. Sci. 2016, 128, 1831 – 1840. Note that this report includes carbonyl olefin metathesis with ruthenium alkylidenes. However, in our hands, we did not observe the formation of products corresponding to carbonyl-olefin metathesis and detail these experiments in the Supporting Information.
dc.identifier.citedreferenceS. M. Rocklage, R. R. Schrock, J. Am. Chem. Soc. 1980, 102, 7808 – 7809.
dc.identifier.citedreferenceS. M. Rocklage, R. R. Schrock, J. Am. Chem. Soc. 1982, 104, 3077 – 3081.
dc.identifier.citedreferenceG. K. Cantrell, T. Y. Meyer, J. Am. Chem. Soc. 1998, 120, 8035 – 8042.
dc.identifier.citedreferenceG. K. Cantrell, S. J. Geib, T. Y. Meyer, Organometallics 2000, 19, 3562 – 3568.
dc.identifier.citedreferenceA related transformation with an imine that isomerizes to the corresponding enamine and subsequently undergoes olefin–olefin metathesis has been reported: J. Zhang, T. B. Gunnoe, Organometallics 2003, 22, 2291 – 2297. Notably, this transformation gives rise to products with one fewer carbon than the current work.
dc.identifier.citedreferenceG. Occhipinti, V. R. Jensen, Organometallics 2011, 30, 3522 – 3529.
dc.identifier.citedreferenceJ. Heppekausen, A. Fürstner, Angew. Chem. Int. Ed. 2011, 50, 7829 – 7832; Angew. Chem. 2011, 123, 7975 – 7978.
dc.identifier.citedreferenceThis HOMO/LUMO depiction has previously been described, see:
dc.identifier.citedreferenceR. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, M. O’Regan, J. Am. Chem. Soc. 1990, 112, 3875 – 3886;
dc.identifier.citedreferenceJ. I. du Toit, C. G. C. E. van Sittert, H. C. M. Vosloo, J. Organomet. Chem. 2013, 738, 76 – 91;
dc.identifier.citedreferenceE. de Brito Sá, A. Rimola, L. Rodríguez-Santiago, M. Sodupe, X. Solans-Monfort, J. Phys. Chem. A 2018, 122, 1702 – 1712;
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.