Show simple item record

Facilitating Large-Scale Snow Shedding from In-Field Solar Arrays using Icephobic Surfaces with Low-Interfacial Toughness

dc.contributor.authorDhyani, Abhishek
dc.contributor.authorPike, Christopher
dc.contributor.authorBraid, Jennifer L.
dc.contributor.authorWhitney, Erin
dc.contributor.authorBurnham, Laurie
dc.contributor.authorTuteja, Anish
dc.date.accessioned2022-06-01T20:28:36Z
dc.date.available2023-06-01 16:28:33en
dc.date.available2022-06-01T20:28:36Z
dc.date.issued2022-05
dc.identifier.citationDhyani, Abhishek; Pike, Christopher; Braid, Jennifer L.; Whitney, Erin; Burnham, Laurie; Tuteja, Anish (2022). "Facilitating Large-Scale Snow Shedding from In-Field Solar Arrays using Icephobic Surfaces with Low-Interfacial Toughness." Advanced Materials Technologies 7(5): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/172801
dc.description.abstractLarge-scale accrual of snow and ice on solar arrays in northern latitudes can cause significant power generation losses during winter. Depending on environmental conditions, snow can encompass a wide range in physical characteristics from dry snow (modulus ≈100 kPa and density ≈0.1 g cm−3) to bulk ice (modulus ≈8 GPa and density ≈0.9 g cm−3). This variation in snow morphology has made the development of a passive, broad-spectrum, snow and ice-shedding surface challenging. Here, the authors develop one of the first surfaces that simultaneously possesses both low-interfacial strength (τ˄ice < 50 kPa) and toughness (Γice < 0.5 J m−2) with ice. These surfaces, fabricated via the addition of mobile polymer chains/oils to a thin polymeric coating, require extremely low detachment forces for ice, enabling its passive shedding at virtually any accretion length scale. Preliminary evidence that the new surfaces can shed different forms of snow and ice from field-deployed solar arrays, over a range of subzero temperatures for several weeks, leading to significant increases in power generation is provided. The optically transparent surfaces are easily scalable and can be widely deployed by the solar industry in areas that see persistent snow. Other applications include automotive windshields, LIDAR covers for autonomous vehicles, and cold climate optical sensors.Coatings that simultaneously possess both low-interfacial strength and toughness with ice are developed. These surfaces can shed different forms of snow and ice from field-deployed solar arrays, over a range of subzero temperatures for several weeks, leading to significant increases in power generation.
dc.publisherIEEE
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotovoltaics
dc.subject.othersnow shedding
dc.subject.othercoatings
dc.subject.othericephobic
dc.subject.otherinterfacial toughness
dc.titleFacilitating Large-Scale Snow Shedding from In-Field Solar Arrays using Icephobic Surfaces with Low-Interfacial Toughness
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172801/1/admt202101032-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172801/2/admt202101032.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172801/3/admt202101032_am.pdf
dc.identifier.doi10.1002/admt.202101032
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceM. D. Thouless, J. Vac. Sci. Technol., A 1991, 9, 2510.
dc.identifier.citedreferenceL. Makkonen, Philos. Trans. R. Soc. London, Ser. A 2000, 358, 2913.
dc.identifier.citedreferenceA. K. Halvey, B. Macdonald, A. Dhyani, A. Tuteja, Philos. Trans. R. Soc., A 2019, 377, 20180266.
dc.identifier.citedreferenceJ. Y. Chung, M. K. Chaudhury, J. Adhes. 2005, 81, 1119.
dc.identifier.citedreferenceA. Dhyani, J. Wang, A. K. Halvey, B. Macdonald, G. Mehta, A. Tuteja, Science 2021, 373, eaba5010.
dc.identifier.citedreferenceL. B. Boinovich, A. M. Emelyanenko, K. A. Emelyanenko, E. B. Modin, ACS Nano 2019, 13, 4335.
dc.identifier.citedreferenceL. B. Boinovich, A. M. Emelyanenko, V. K. Ivanov, A. S. Pashinin, ACS Appl. Mater. Interfaces 2013, 5, 2549.
dc.identifier.citedreferenceM. Balordi, A. Cammi, C. Chemelli, P. Marcacci, G. Pirovano, G. Santucci, in IWAIS, 2019.
dc.identifier.citedreferenceA. J. Meuler, J. D. Smith, K. K. Varanasi, J. M. Mabry, G. H. McKinley, R. E. Cohen, ACS Appl. Mater. Interfaces 2010, 2, 3100.
dc.identifier.citedreferenceS. Kulinich, M. Farzaneh, Appl. Surf. Sci. 2009, 255, 8153.
dc.identifier.citedreferenceH. Sojoudi, M. Wang, N. Boscher, G. H. McKinley, K. K. Gleason, Soft Matter 2016, 12, 1938.
dc.identifier.citedreferenceP. Kim, T.-S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, J. Aizenberg, ACS Nano 2012, 6, 6569.
dc.identifier.citedreferenceR. Dou, J. Chen, Y. Zhang, X. Wang, D. Cui, Y. Song, L. Jiang, J. Wang, ACS Appl. Mater. Interfaces 2014, 6, 6998.
dc.identifier.citedreferenceY. H. Yeong, A. Milionis, E. Loth, J. Sokhey, Cold Reg. Sci. Technol. 2018, 148, 29.
dc.identifier.citedreferenceK. Golovin, S. P. Kobaku, D. H. Lee, E. T. DiLoreto, J. M. Mabry, A. Tuteja, Sci. Adv. 2016, 2, e1501496.
dc.identifier.citedreferenceD. L. Beemer, W. Wang, A. K. Kota, J. Mater. Chem. A 2016, 4, 18253.
dc.identifier.citedreferenceK. Golovin, A. Tuteja, Sci. Adv. 2017, 3, e1701617.
dc.identifier.citedreferenceK. Golovin, A. Dhyani, M. D. Thouless, A. Tuteja, Science 2019, 364, 371.
dc.identifier.citedreferenceZ. Suo, J. W. Hutchinson, Int. J. Fract. 1990, 43, 1.
dc.identifier.citedreferenceM. Thouless, A. Evans, M. Ashby, J. Hutchinson, Acta Metall. 1987, 35, 1333.
dc.identifier.citedreferenceJ. R. Blackford, J. Phys. D: Appl. Phys. 2007, 40, R355.
dc.identifier.citedreferenceR. Sills, M. Thouless, Int. J. Solids Struct. 2015, 55, 32.
dc.identifier.citedreferenceR. Sills, M. Thouless, Eng. Fract. Mech. 2013, 109, 353.
dc.identifier.citedreferenceZ. He, S. Xiao, H. Gao, J. He, Z. Zhang, Soft Matter 2017, 13, 6562.
dc.identifier.citedreferenceP. Irajizad, A. Al-Bayati, B. Eslami, T. Shafquat, M. Nazari, P. Jafari, V. Kashyap, A. Masoudi, D. Araya, H. Ghasemi, Mater. Horiz. 2019, 6, 758.
dc.identifier.citedreferenceL. Zhang, Z. Guo, J. Sarma, X. Dai, ACS Appl. Mater. Interfaces 2020, 12, 20084.
dc.identifier.citedreferenceZ. He, Y. Zhuo, J. He, Z. Zhang, Soft Matter 2018, 14, 4846.
dc.identifier.citedreferenceL. Zhu, J. Xue, Y. Wang, Q. Chen, J. Ding, Q. Wang, ACS Appl. Mater. Interfaces 2013, 5, 4053.
dc.identifier.citedreferenceR. Pfister, M. Schneebeli, Hydrol. Processes 1999, 13, 2345.
dc.identifier.citedreferenceM. Mellor, A Review of Basic Snow Mechanics, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH 1974.
dc.identifier.citedreferenceP. Gilman, N. A. DiOrio, J. M. Freeman, S. Janzou, A. Dobos, D. Ryberg, SAM Photovoltaic Model Technical Reference 2016 Update, National Renewable Energy Lab. (NREL), Golden, CO 2018.
dc.identifier.citedreferenceCalifornia Energy Commission, Guidelines for California’s Solar Electric Incentive Programs (Senate Bill 1), 4th ed. 2011, http://ww2.arb.ca.gov/sites/default/files/barcu/regact/2013/capandtrade13/04cec.pdf.
dc.identifier.citedreferenceJ. L. Braid, D. Riley, J. M. Pearce, L. Burnham, in 2020 47th IEEE Photovoltaic Specialists Conf. (PVSC), IEEE, Piscataway, NJ 2020, pp. 1510 – 1516.
dc.identifier.citedreferenceA. P. Dobos, PV Watts Version 5 Manual, National Renewable Energy Lab. (NREL), Golden, CO 2014.
dc.identifier.citedreferenceP.-O. A. Borrebæk, B. P. Jelle, Z. Zhang, Sol. Energy Mater. Sol. Cells 2020, 206, 110306.
dc.identifier.citedreferenceE. Andenæs, B. P. Jelle, K. Ramlo, T. Kolås, J. Selj, S. E. Foss, Sol. Energy 2018, 159, 318.
dc.identifier.citedreferenceL. Powers, J. Newmiller, T. Townsend, in 2010 35th IEEE Photovoltaic Specialists Conf, IEEE, Piscataway, NJ 2010, pp. 000973 – 000978.
dc.identifier.citedreferenceR. E. Pawluk, Y. Chen, Y. She, Renewable Sustainable Energy Rev. 2019, 107, 171.
dc.identifier.citedreferenceJ. Heil, B. Mohammadian, M. Sarayloo, K. Bruns, H. Sojoudi, Appl. Sci. 2020, 10, 5407.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.