Show simple item record

Ultrasound-Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer

dc.contributor.authorHumphries, Brock A.
dc.contributor.authorAliabouzar, Mitra
dc.contributor.authorQuesada, Carole
dc.contributor.authorBevoor, Avinash
dc.contributor.authorHo, Kenneth K. Y.
dc.contributor.authorFarfel, Alex
dc.contributor.authorBuschhaus, Johanna M.
dc.contributor.authorRajendran, Shrila
dc.contributor.authorFabiilli, Mario L.
dc.contributor.authorLuker, Gary D.
dc.date.accessioned2022-06-01T20:28:52Z
dc.date.available2023-06-01 16:28:49en
dc.date.available2022-06-01T20:28:52Z
dc.date.issued2022-05
dc.identifier.citationHumphries, Brock A.; Aliabouzar, Mitra; Quesada, Carole; Bevoor, Avinash; Ho, Kenneth K. Y.; Farfel, Alex; Buschhaus, Johanna M.; Rajendran, Shrila; Fabiilli, Mario L.; Luker, Gary D. (2022). "Ultrasound-Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer." Advanced Healthcare Materials 11(10): n/a-n/a.
dc.identifier.issn2192-2640
dc.identifier.issn2192-2659
dc.identifier.urihttps://hdl.handle.net/2027.42/172808
dc.description.abstractCancer cells continually sense and respond to mechanical cues from the extracellular matrix (ECM). Interaction with the ECM can alter intracellular signaling cascades, leading to changes in processes that promote cancer cell growth, migration, and survival. The present study used a recently developed composite hydrogel composed of a fibrin matrix and phase-shift emulsion, termed an acoustically responsive scaffold (ARS), to investigate effects of local mechanical properties on breast cancer cell signaling. Treatment of ARSs with focused ultrasound drives acoustic droplet vaporization (ADV) in a spatiotemporally controlled manner, inducing local compaction and stiffening of the fibrin matrix adjacent to the matrix–bubble interface. Combining ARSs and live single cell imaging of triple-negative breast cancer cells, it is discovered that both basal and growth-factor stimulated activities of protein kinase B (also known as Akt) and extracellular signal-regulated kinase (ERK), two major kinases driving cancer progression, negatively correlate with increasing distance from the ADV-induced bubble both in vitro and in a mouse model. Together, these data demonstrate that local changes in ECM compaction regulate Akt and ERK signaling in breast cancer and support further applications of the novel ARS technology to analyze spatial and temporal effects of ECM mechanics on cell signaling and cancer biology.The study uses a smart hydrogel system with focused ultrasound for precise temporal and spatial control of tissue compaction. Incorporating breast cancer cells into this hydrogel system reveals that ultrasound-triggered increases in compaction of extracellular matrix promotes signaling through pathways known to drive proliferation and aggressive features in breast cancer and other malignancies.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermechanobiology
dc.subject.otherERK
dc.subject.otherAkt
dc.subject.otherphase-shift emulsions
dc.subject.othertriple-negative breast cancer
dc.subject.otherultrasound
dc.subject.otherfibrin
dc.titleUltrasound-Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172808/1/adhm202101672_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172808/2/adhm202101672.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172808/3/adhm202101672-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adhm.202101672
dc.identifier.sourceAdvanced Healthcare Materials
dc.identifier.citedreferenceR. Yang, H. Liang, RSC Adv. 2018, 8, 6675.
dc.identifier.citedreferenceV. Constantini, L. R. Zacharski, Cancer Metastasis Rev. 1992, 11, 283.
dc.identifier.citedreferenceC. Liu, X. Li, J. Feng, F. Liao, D. Li, D. Han, Clin. Hemorheol. Microcirc. 2016, 63, 399.
dc.identifier.citedreferenceR. Zhang, M. Ma, G. Dong, R. R. Yao, J. H. Li, Q. D. Zheng, Y. Y. Dong, H. Ma, D. M. Gao, J. F. Cui, Z. G. Ren, R. X. Chen, Cancer Sci. 2017, 108, 1778.
dc.identifier.citedreferenceM. Sun, G. Chi, J. Xu, Y. Tan, J. Xu, S. Lv, Z. Xu, Y. Xia, L. Li, Y. Li, Stem Cell Res. Ther. 2018, 9, 52.
dc.identifier.citedreferenceC. Liu, D. Lewin Mejia, B. Chiang, K. E. Luker, G. D. Luker, Acta Biomater. 2018, 75, 213.
dc.identifier.citedreferenceH. M. Micek, M. R. Visetsouk, K. S. Masters, P. K. Kreeger, iScience 2020, 23, 101742.
dc.identifier.citedreferenceJ. Vasudevan, C. T. Lim, J. G. Fernandez, Adv. Funct. Mater. 2020, 30, 2005383.
dc.identifier.citedreferenceC. Liu, M. Li, Z. X. Dong, D. Jiang, X. Li, S. Lin, D. Chen, X. Zou, X. D. Zhang, G. D. Luker, Acta Biomater. 2021, 131, 326.
dc.identifier.citedreferenceM. R. Zanotelli, C. A. Reinhart-King, Adv. Exp. Med. Biol. 2018, 1092, 91.
dc.identifier.citedreferenceY. Li, R. Randriantsilefisoa, J. Chen, J. L. Cuellar-Camacho, W. Liang, W. Li, ACS Appl. Bio Mater. 2020, 3, 4474.
dc.identifier.citedreferenceM. G. Ondeck, A. Kumar, J. K. Placone, C. M. Plunkett, B. F. Matte, K. C. Wong, L. Fattet, J. Yang, A. J. Engler, Proc. Natl. Acad. Sci. USA 2019, 116, 3502.
dc.identifier.citedreferenceE. Hopkins, E. Valois, A. Stull, K. Le, A. A. Pitenis, M. Z. Wilson, ACS Biomater. Sci. Eng. 2021, 7, 408.
dc.identifier.citedreferenceJ. Winkler, A. Abisoye-Ogunniyan, K. J. Metcalf, Z. Werb, Nat. Commun. 2020, 11, 5120.
dc.identifier.citedreferenceJ. A. Burdick, C. Chung, X. Jia, M. A. Randolph, R. Langer, Biomacromolecules 2005, 6, 386.
dc.identifier.citedreferenceM. Guvendiren, J. A. Burdick, Nat. Commun. 2012, 3, 792.
dc.identifier.citedreferenceR. S. Stowers, S. C. Allen, L. J. Suggs, Proc. Natl. Acad. Sci. USA 2015, 112, 1953.
dc.identifier.citedreferenceM. Delcommenne, C. H. Streuli, J. Biol. Chem. 1995, 270, 26794.
dc.identifier.citedreferenceM. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, V. M. Weaver, Cancer Cell 2005, 8, 241.
dc.identifier.citedreferenceW. Guo, F. G. Giancotti, Nat. Rev. Mol. Cell Biol. 2004, 5, 816.
dc.identifier.citedreferenceD. E. White, N. A. Kurpios, D. Zuo, J. A. Hassell, S. Blaess, U. Mueller, W. J. Muller, Cancer Cell 2004, 6, 159.
dc.identifier.citedreferenceV. Mieulet, C. Garnier, Y. Kieffer, T. Guilbert, F. Nemati, E. Marangoni, G. Renault, F. Chamming’s, A. Vincent-Salomon, F. Mechta-Grigoriou, Sci. Rep. 2021, 11, 4219.
dc.identifier.citedreferenceQ. Shi, R. P. Ghosh, H. Engelke, C. H. Rycroft, L. Cassereau, J. A. Sethian, V. M. Weaver, J. T. Liphardt, Proc. Natl. Acad. Sci. USA 2014, 111, 658.
dc.identifier.citedreferenceL. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, H. Cui, Signal Transduct. Target. Ther. 2020, 5, 8.
dc.identifier.citedreferenceC. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, M. A. Schwartz, Nature 2010, 466, 263.
dc.identifier.citedreferenceB. A. Humphries, A. C. Cutter, J. M. Buschhaus, Y. C. Chen, T. Qyli, D. S. W. Palagama, S. Eckley, T. H. Robison, A. Bevoor, B. Chiang, H. R. Haley, S. Sahoo, P. C. Spinosa, D. B. Neale, J. Boppisetti, D. Sahoo, P. Ghosh, J. Lahann, B. D. Ross, E. Yoon, K. E. Luker, G. D. Luker, Breast Cancer Res. 2020, 22, 60.
dc.identifier.citedreferenceX. Lu, X. Dong, S. Natla, O. D. Kripfgans, J. B. Fowlkes, X. Wang, R. Franceschi, A. J. Putnam, M. L. Fabiilli, Ultrasound Med. Biol. 2019, 45, 2471.
dc.identifier.citedreferenceS. Regot, J. J. Hughey, B. T. Bajar, S. Carrasco, M. W. Covert, Cell 2014, 157, 1724.
dc.identifier.citedreferenceG. Maryu, M. Matsuda, K. Aoki, Cell Struct. Funct. 2016, 41, 81.
dc.identifier.citedreferenceB. A. Humphries, J. M. Buschhaus, Y. C. Chen, H. R. Haley, T. Qyli, B. Chiang, N. Shen, S. Rajendran, A. Cutter, Y. H. Cheng, Y. T. Chen, J. Cong, P. C. Spinosa, E. Yoon, K. E. Luker, G. D. Luker, Mol. Cancer Res. 2019, 17, 1142.
dc.identifier.citedreferenceH. Zhao, L. Ma, J. Zhou, Z. Mao, C. Gao, J. Shen, Biomed. Mater. 2008, 3, 015001.
dc.identifier.citedreferenceX. Lu, H. Jin, C. Quesada, E. C. Farrell, L. Huang, M. Aliabouzar, O. D. Kripfgans, J. B. Fowlkes, R. T. Franceschi, A. J. Putnam, M. L. Fabiilli, Acta Biomater. 2020, 113, 217.
dc.identifier.citedreferenceP. Lu, K. Takai, V. M. Weaver, Z. Werb, Cold Spring Harb. Perspect. Biol. 2011, 3, a005058.
dc.identifier.citedreferenceJ. D. Humphrey, E. R. Dufresne, M. A. Schwartz, Nat. Rev. Mol. Cell Biol. 2014, 15, 802.
dc.identifier.citedreferenceF. Spill, D. S. Reynolds, R. D. Kamm, M. H. Zaman, Curr. Opin. Biotechnol. 2016, 40, 41.
dc.identifier.citedreferenceC. Byrne, C. Schairer, J. Wolfe, N. Parekh, M. Salane, L. A. Brinton, R. Hoover, R. Haile, J. Natl. Cancer Inst. 1995, 87, 1622.
dc.identifier.citedreferenceP. Lu, V. M. Weaver, Z. Werb, J. Cell Biol. 2012, 196, 395.
dc.identifier.citedreferenceB. M. Baker, B. Trappmann, W. Y. Wang, M. S. Sakar, I. L. Kim, V. B. Shenoy, J. A. Burdick, C. S. Chen, Nat. Mater. 2015, 14, 1262.
dc.identifier.citedreferenceA. J. Berger, K. M. Linsmeier, P. K. Kreeger, K. S. Masters, Biomaterials 2017, 141, 125.
dc.identifier.citedreferenceM. Aliabouzar, C. D. Davidson, W. Y. Wang, O. D. Kripfgans, R. T. Franceschi, A. J. Putnam, J. B. Fowlkes, B. M. Baker, M. L. Fabiilli, Soft Matter 2020, 16, 6501.
dc.identifier.citedreferenceO. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, P. L. Carson, Ultrasound Med. Biol. 2000, 26, 1177.
dc.identifier.citedreferenceP. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, P. A. Dayton, Biomaterials 2012, 33, 3262.
dc.identifier.citedreferenceM. L. Fabiilli, C. G. Wilson, F. Padilla, F. M. Martin-Saavedra, J. B. Fowlkes, R. T. Franceschi, Acta Biomater. 2013, 9, 7399.
dc.identifier.citedreferenceA. Moncion, M. Lin, E. G. O’Neill, R. T. Franceschi, O. D. Kripfgans, A. J. Putnam, M. L. Fabiilli, Biomaterials 2017, 140, 26.
dc.identifier.citedreferenceM. Aliabouzar, A. Jivani, X. Lu, O. D. Kripfgans, J. B. Fowlkes, M. L. Fabiilli, Ultrason. Sonochem. 2020, 66, 105109.
dc.identifier.citedreferenceL. Kass, J. T. Erler, M. Dembo, V. M. Weaver, Int. J. Biochem. Cell Biol. 2007, 39, 1987.
dc.identifier.citedreferenceD. T. Butcher, T. Alliston, V. M. Weaver, Nat. Rev. Cancer 2009, 9, 108.
dc.identifier.citedreferenceK. Lee, Q. K. Chen, C. Lui, M. A. Cichon, D. C. Radisky, C. M. Nelson, Mol. Biol. Cell 2012, 23, 4097.
dc.identifier.citedreferenceM. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. Lim, C. A. Schoenenberger, Nat. Nanotechnol. 2012, 7, 757.
dc.identifier.citedreferenceM. F. Pang, M. J. Siedlik, S. Han, M. Stallings-Mann, D. C. Radisky, C. M. Nelson, Cancer Res. 2016, 76, 5277.
dc.identifier.citedreferenceE. Farrell, M. Aliabouzar, C. Quesada, B. M. Baker, R. T. Franceschi, A. J. Putnam, M. L. Fabiilli, Acta Biomater. 2021, 138, 133.
dc.identifier.citedreferenceA. S. LaCroix, A. D. Lynch, M. E. Berginski, B. D. Hoffman, Elife 2018, 7, e33927.
dc.identifier.citedreferenceJ. A. McCubrey, L. S. Steelman, W. H. Chappell, S. L. Abrams, E. W. Wong, F. Chang, B. Lehmann, D. M. Terrian, M. Milella, A. Tafuri, F. Stivala, M. Libra, J. Basecke, C. Evangelisti, A. M. Martelli, R. A. Franklin, Biochim. Biophys. Acta 2007, 1773, 1263.
dc.identifier.citedreferenceB. D. Manning, A. Toker, Cell 2017, 169, 381.
dc.identifier.citedreferenceV. Constantini, L. R. Zacharski, V. A. Memoli, W. Kisiel, B. J. Kudryk, S. M. Rousseau, Cancer Res. 1991, 51, 349.
dc.identifier.citedreferenceP. J. Simpson-Haidaris, B. Rybarczyk, Ann. N. Y. Acad. Sci. 2001, 936, 406.
dc.identifier.citedreferenceN. Cancer Genome Atlas Research, J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander, J. M. Stuart, Nat. Genet. 2013, 45, 1113.
dc.identifier.citedreferenceP. C. Spinosa, B. A. Humphries, D. Lewin Mejia, J. M. Buschhaus, J. J. Linderman, G. D. Luker, K. E. Luker, Sci. Signal. 2019, 12, eaaw4204.
dc.identifier.citedreferenceA. Hollestelle, F. Elstrodt, J. H. Nagel, W. W. Kallemeijn, M. Schutte, Mol. Cancer Res. 2007, 5, 195.
dc.identifier.citedreferenceC. M. Ghajar, K. S. Blevins, C. C. W. Hughes, S. C. George, A. J. Putnam, Tissue Eng. 2006, 12, 2875.
dc.identifier.citedreferenceH. Duong, B. Wu, B. Tawil, Tissue Eng., Part A 2009, 15, 1865.
dc.identifier.citedreferenceN. Abe-Fukasawa, R. Watanabe, Y. Gen, T. Nishino, N. Itasaki, FEBS J. 2021, 288, 5650.
dc.identifier.citedreferenceM. J. Bissell, W. C. Hines, Nat. Med. 2011, 17, 320.
dc.identifier.citedreferenceD. F. Quail, J. A. Joyce, Nat. Med. 2013, 19, 1423.
dc.identifier.citedreferenceH. F. Dvorak, D. R. Senger, A. M. Dvorak, Cancer Metastasis Rev. 1983, 2, 41.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.