Show simple item record

Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene

dc.contributor.authorTaylor, S. P.
dc.contributor.authorPatterson, M. O.
dc.contributor.authorLam, A. R.
dc.contributor.authorJones, H.
dc.contributor.authorWoodard, S. C.
dc.contributor.authorHabicht, M. H.
dc.contributor.authorThomas, E. K.
dc.contributor.authorGrant, G. R.
dc.date.accessioned2022-06-01T20:28:57Z
dc.date.available2023-06-01 16:28:54en
dc.date.available2022-06-01T20:28:57Z
dc.date.issued2022-05
dc.identifier.citationTaylor, S. P.; Patterson, M. O.; Lam, A. R.; Jones, H.; Woodard, S. C.; Habicht, M. H.; Thomas, E. K.; Grant, G. R. (2022). "Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene." Paleoceanography and Paleoclimatology 37(5): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/172810
dc.description.abstractThe Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene-Pleistocene. However, the response of the KCE during Pleistocene super-interglacials has not been examined in detail. We present a ∼2.2 Ma record of X-ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time-frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high-latitude and low-latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid-Pleistocene Climate Transition (MPT). We observe two periods of elevated ln Ca/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29-25, 15, and 11-9 and occur around recent climatic transitions, the MPT and Mid-Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.Key PointsNonlinear influences on northwest Pacific oceanic circulation during the 41-kyr worldPronounced periods of warmth during MIS 29-25, 15, 11-9 under a colder climate regimeChanges in North Pacific Subtropical Gyre correspond to extreme Arctic warming events
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othermid-Pleistocene climate transition
dc.subject.otherPleistocene
dc.subject.otherwestern boundary current
dc.subject.othersuper-interglacial
dc.subject.otherheterodyne
dc.subject.otherX-ray fluorescence
dc.titleExpanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172810/1/palo21161_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172810/2/palo21161.pdf
dc.identifier.doi10.1029/2021PA004395
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceSager, W. W., Zhang, J., Korenaga, J., Sano, T., Koppers, A. A., Widdowson, M., & Mahoney, J. J. ( 2013 ). An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 6 ( 11 ), 976 – 981.
dc.identifier.citedreferenceThomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L., et al. ( 2016 ). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters, 455, 196 – 206. https://doi.org/10.1016/j.epsl.2016.09.044
dc.identifier.citedreferenceTjallingii, R., Röhl, U., Kölling, M., & Bickert, T. ( 2007 ). Influence of the water content on X- ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8, Q02004. https://doi.org/10.1029/2006GC001393
dc.identifier.citedreferenceTjallingii, R., Stattegger, K., Wetzel, A., & Van Phach, P. ( 2010 ). Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quaternary Science Reviews, 29 ( 11–12 ), 1432 – 1444.
dc.identifier.citedreferenceUjiié, H. ( 2003 ). A 370-ka paleoceanographic record from the Hess rise, central north Pacific Ocean, and an indistinct ‘Kuroshio extension’. Marine Micropaleontology, 49, 21 – 47.
dc.identifier.citedreferenceUjiié, H., & Ujiié, Y. ( 1999 ). Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37 ( 1 ), 23 – 40.
dc.identifier.citedreferenceVan Hoang, L., Clift, P. D., Schwab, A. M., Huuse, M., Nguyen, D. A., & Zhen, S. ( 2010 ). Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342 ( 1 ), 219 – 244.
dc.identifier.citedreferenceVenti, N. L., & Billups, K. ( 2013 ). Surface water hydrography of the Kuroshio extension during the Pliocene–Pleistocene climate transition. Marine Micropaleontology, 101, 106 – 114.
dc.identifier.citedreferenceVenti, N. L., Billups, K., & Herbert, T. D. ( 2013 ). Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing. Earth and Planetary Science Letters, 384, 121 – 131.
dc.identifier.citedreferenceVenti, N. L., Billups, K., & Herbert, T. D. ( 2017 ). Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition (3.0–1.8 Ma). Paleoceanography, 32, 92 – 103. https://doi.org/10.1002/2016PA002955
dc.identifier.citedreferenceVenti, N. L., Leckie, R. M., & Evans, H. F. ( 2006 ). Revised late Neogene mid-latitude planktic foraminiferal biostratigraphy for the northwest Pacific (Shatsky Rise), ODP Leg 198. In AGU Fall Meeting Abstracts (Vol. 2006, pp. PP23B-1750 ).
dc.identifier.citedreferenceWang, B., & Zhou, X. ( 2008 ). Climate variation and prediction of rapid intensification in tropical cyclones in the Western North Pacific. Meteorology and Atmospheric Physics, 99 ( 1 ), 1 – 16.
dc.identifier.citedreferenceWang, P., Tian, J., Cheng, X., Liu, C., & Xu, J. ( 2003 ). Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31 ( 3 ), 239 – 242.
dc.identifier.citedreferenceWang, X., Wei, H., Taheri, M., Khormali, F., Danukalova, G., & Chen, F. ( 2016 ). Early Pleistocene climate in Western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports, 6 ( 1 ), 20560.
dc.identifier.citedreferenceWeedon, G. P. ( 2003 ). Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge University Press.
dc.identifier.citedreferenceWeltje, G. J., & Tjallingii, R. ( 2008 ). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274 ( 3–4 ), 423 – 438.
dc.identifier.citedreferenceWesterhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13, Q06015. https://doi.org/10.1029/2012GC004096
dc.identifier.citedreferenceWesterhold, T., Röhl, U., McCarren, H. K., & Zachos, J. C. ( 2009 ). Latest on the absolute age of the Paleocene-Eocene thermal maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and −17. Earth and Planetary Science Letters, 287 ( 3–4 ), 412 – 419.
dc.identifier.citedreferenceWu, L., Wilson, D. J., Wang, R., Yin, X., Chen, Z., Xiao, W., & Huang, M. ( 2020 ). Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain-size variations of glaciomarine sediments in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 21, e2020GC009350. https://doi.org/10.1029/2020GC009350
dc.identifier.citedreferenceYamamoto, M., Suemune, R., & Oba, T. ( 2005 ). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32, L05609. https://doi.org/10.1029/2004GL021903
dc.identifier.citedreferenceYamane, M. ( 2003 ). Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology, 48 ( 3–4 ), 205 – 223.
dc.identifier.citedreferenceYang, S., Ding, F., & Ding, Z. ( 2006 ). Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70 ( 7 ), 1695 – 1709.
dc.identifier.citedreferenceYin, Q. ( 2013 ). Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494 ( 7436 ), 222 – 225.
dc.identifier.citedreferenceYin, Q. Z., & Berger, A. ( 2012 ). Individual contribution of insolation and CO 2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38 ( 3–4 ), 709 – 724.
dc.identifier.citedreferenceYu, J., Gan, B., Jing, Z., & Wu, L. ( 2020 ). Winter extreme mixed layer depth south of the Kuroshio extension. Journal of Climate, 33 ( 24 ), 10419 – 10436.
dc.identifier.citedreferenceZachos, J. C., Kroon, D., Blum, P., & Party, S. S. ( 2004 ). Early Cenozoic extreme climates: The Walvis Ridge Transect (Vol. 208 ). Ocean Drilling Program.
dc.identifier.citedreferenceZhang, Y., Wallace, J. M., & Battisti, D. S. ( 1997 ). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10 ( 5 ), 1004 – 1020.
dc.identifier.citedreferenceZhang, Z., Zhao, W., Qiu, B., & Tian, J. ( 2017 ). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47 ( 6 ), 1243 – 1259.
dc.identifier.citedreferenceZhao, W., Tarasov, P. E., Lozhkin, A. V., Anderson, P. M., Andreev, A. A., Korzun, J. A., et al. ( 2018 ). High-latitude vegetation and climate changes during the Mid-Pleistocene Transition inferred from a palynological record from Lake El’gygytgyn, NE Russian Arctic. Boreas, 47 ( 1 ), 137 – 149.
dc.identifier.citedreferenceZhong, Y., & Liu, Z. ( 2009 ). On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean. Journal of Physical Oceanography, 39 ( 9 ), 2052 – 2076.
dc.identifier.citedreferenceCaballero-Gill, R. P., Herbert, T. D., & Dowsett, H. J. ( 2019 ). 100-kyr paced climate change in the Pliocene warm period, southwest Pacific. Paleoceanography and Paleoclimatology, 34, 524 – 545. https://doi.org/10.1029/2018PA003496
dc.identifier.citedreferenceAbell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. ( 2021 ). Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 70 – 75.
dc.identifier.citedreferenceAhagon, N., Tanaka, Y., & Ujiie´, H. ( 1993 ). Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 22 ( 3 ), 255 – 273.
dc.identifier.citedreferenceAhn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. ( 2017 ). A probabilistic Pliocene–Pleistocene stack of benthic δ 18 O using a profile hidden Markov model. Dynamics and Statistics of the Climate System, 2 ( 1 ), dzx002. https://doi.org/10.1093/climsys/dzx002
dc.identifier.citedreferenceAndres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. ( 2015 ). Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28 ( 4 ), 84 – 95.
dc.identifier.citedreferenceArz, H. W., Pätzold, J., & Wefer, G. ( 1998 ). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research, 50 ( 2 ), 157 – 166.
dc.identifier.citedreferenceBahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P., Hernández-Molina, F. J., Röhl, U., et al. ( 2014 ). Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: An inorganic geochemical approach. Geochemistry, Geophysics, Geosystems, 15, 3145 – 3160. https://doi.org/10.1002/2014GC005356
dc.identifier.citedreferenceBahr, A., Lamy, F., Arz, H., Kuhlmann, H., & Wefer, G. ( 2005 ). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 ( 4 ), 309 – 322.
dc.identifier.citedreferenceBahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., & Wefer, G. ( 2008 ). Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems, 9, Q01004. https://doi.org/10.1029/2007GC001683
dc.identifier.citedreferenceBalco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1
dc.identifier.citedreferenceBerg, S., Wagner, B., White, D. A., & Melles, M. ( 2010 ). No significant ice-sheet expansion beyond present ice margins during the past 4500 yr at Rauer Group, East Antarctica. Quaternary Research, 74 ( 1 ), 23 – 25.
dc.identifier.citedreferenceBialik, O. M., Jarochowska, E., & Grossowicz, M. ( 2021 ). Ordination analysis in sedimentology, geochemistry and palaeoenvironment—Background, current trends and recommendations. The Depositional Record, 7 ( 3 ), 541 – 563.
dc.identifier.citedreferenceBind off, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 477 – 587 ).
dc.identifier.citedreferenceBourget, J., Zaragosi, S., Garlan, T., Gabelotaud, I., Guyomard, P., Dennielou, B., et al. ( 2008 ). Discovery of a giant deep-sea valley in the Indian ocean, off eastern Africa: The Tanzania channel. Marine Geology, 255 ( 3–4 ), 179 – 185.
dc.identifier.citedreferenceBralower, T. J., Premoli Silva, I., & Malone, M. J. ( 2002 ). Leg 198. In Proceedings of the Ocean Drilling Program. 198 Scientific Results (Vol. 198, p. 148 ).
dc.identifier.citedreferenceBrigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., et al. ( 2013 ). Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 340 ( 6139 ), 1421 – 1427.
dc.identifier.citedreferenceCai, W., Santoso, A., Wang, G., Sang-Wook, Y., Soon-Il, A., Cobb, K. M., et al. ( 2015 ). ENSO and greenhouse warming. Nature Climate Change, 5, 849 – 859. https://doi.org/10.1038/nclimate2743
dc.identifier.citedreferenceChen, C., Beardsley, R. C., & Limeburner, R. ( 1992 ). The structure of the Kuroshio southwest of Kyushu: Velocity, transport and potential vorticity fields. Deep Sea Research Part A. Oceanographic Research Papers, 39 ( 2 ), 245 – 268.
dc.identifier.citedreferenceChen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., & Lu, H. ( 2006 ). Zr/Rb ratio in the 767 Chinese loess sequences and its implication for changes in the East Asian winter monsoon 768 strength. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1471 – 1482.
dc.identifier.citedreferenceClemens, S., Prell, W., & Sun, Y. ( 2010 ). Orbital-scale timing and mechanisms driving late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ 18 O. Paleoceanography, 25, PA4207. https://doi.org/10.1029/2010PA001926
dc.identifier.citedreferenceCroudace, I. W., & Rothwell, R. G., (Eds.) ( 2015 ). In Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences (Vol. 17 ). Springer.
dc.identifier.citedreferenceda Silva, A. M., Young, C. C., & Levitus, S. ( 1994 ). Atlas of surface marine data 1994, Vol. 1: Algorithms and procedures. Noaa Atlas Nesdis, 6 ( 83 ), 20910 – 23282.
dc.identifier.citedreferenceDeser, C., Alexander, M. A., & Timlin, M. S. ( 1999 ). Evidence for a wind-driven intensification of the Kuroshio Current extension from the 1970s to the 1980s. Journal of Climate, 12 ( 6 ), 1697 – 1706.
dc.identifier.citedreferenceDe Wet, G., Castañeda, I., DeConto, R., & Brigham-Grette, J. ( 2016 ). A high-resolution mid Pleistocene temperature record from Arctic Lake El’gygytgyn: A 50 kyr super interglacial from MIS 33 to MIS 31? Earth and Planetary Science Letters, 436, 56 – 63.
dc.identifier.citedreferenceDunlea, A. G., Murray, R. W., Tada, R., Alvarez-Zarikian, C. A., Anderson, C. H., Gilli, A., et al. ( 2020 ). Intercomparison of XRF core scanning results from seven labs and approaches to practical calibration. Geochemistry, Geophysics, Geosystems, 21, e2020GC009248. https://doi.org/10.1029/2020GC009248
dc.identifier.citedreferenceDutkiewicz, A., Müller, R. D., O’Callaghan, S., & Jónasson, H. ( 2015 ). Census of seafloor sediments in the world’s ocean. Geology, 43 ( 9 ), 795 – 798.
dc.identifier.citedreferenceElderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., & Piotrowski, A. M. ( 2012 ). Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science, 337 ( 6095 ), 704 – 709.
dc.identifier.citedreferenceEvans, H. F., Channell, J. E., & Sager, W. W. ( 2005 ). Late Miocene–Holocene magnetic polarity stratigraphy and astrochronology, ODP Leg 198, Shatsky Rise. Proceedings of the Ocean Drilling Program Scientific Results, 198, 1 – 39.
dc.identifier.citedreferenceFedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. ( 2013 ). Patterns and mechanisms of early Pliocene warmth. Nature, 496 ( 7443 ), 43 – 49.
dc.identifier.citedreferenceFord, H. L., & Raymo, M. E. ( 2020 ). Regional and global signals in seawater δ 18 O records across the mid-Pleistocene transition. Geology, 48 ( 2 ), 113 – 117.
dc.identifier.citedreferenceFord, H. L., Sosdian, S. M., Rosenthal, Y., & Raymo, M. E. ( 2016 ). Gradual and abrupt changes during the mid-Pleistocene transition. Quaternary Science Reviews, 148, 222 – 233.
dc.identifier.citedreferenceFrankignoul, C., & Sennéchael, N. ( 2007 ). Observed influence of North Pacific SST anomalies on the atmospheric circulation. Journal of Climate, 20 ( 3 ), 592 – 606.
dc.identifier.citedreferenceGallagher, S. J., Kitamura, A., Iryu, Y., Itaki, T., Koizumi, I., & Hoiles, P. W. ( 2015 ). The Pliocene to recent history of the Kuroshio and Tsushima currents: A multi-proxy approach. Progress in Earth and Planetary Science, 2 ( 1 ), 17.
dc.identifier.citedreferenceGruetzner, J., & Higgins, S. M. ( 2010 ). Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift. Paleoceanography, 25, PA4204. https://doi.org/10.1029/2009PA001873
dc.identifier.citedreferenceHabicht, M. H. ( 2019 ). Middle to Late Pleistocene Paleoenvironmental Reconstructions from Lake El’gygytgyn, Arctic Russia (Doctoral dissertation). University of Massachusetts Libraries.
dc.identifier.citedreferenceHalberstadt, A. R. W., Chorley, H., Levy, R. H., Naish, T., DeConto, R. M., Gasson, E., & Kowalewski, D. E. ( 2021 ). CO 2 and tectonic controls on Antarctic climate and ice-sheet evolution in the mid-Miocene. Earth and Planetary Science Letters, 564, 116908.
dc.identifier.citedreferenceHammer, Ø., Harper, D. A. T., & Ryan, P. D. ( 2001 ). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 ( 1 ), 9.
dc.identifier.citedreferenceHaug, G. H., Sigman, D. M., Tiedemann, R., Pederson, T., & Sarnthein, M. ( 1999 ). A biogenic silica record of the onset of halocline stratification on in the subpolar North Pacific 2.73 Ma. Nature, 401, 779 – 782.
dc.identifier.citedreferenceHeslop, D., Dekkers, M. J., & Langereis, C. G. ( 2002 ). Timing and structure of the mid Pleistocene transition: Records from the loess deposits of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 185 ( 1–2 ), 133 – 143.
dc.identifier.citedreferenceHodell, D. A., Evans, H. F., Channell, J. E., & Curtis, J. H. ( 2010 ). Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period. Quaternary Science Reviews, 29 ( 27–28 ), 3875 – 3886.
dc.identifier.citedreferenceHoiles, P. W., Gallagher, S. J., Kitamura, A., & Southwood, J. M. ( 2012 ). The evolution of the Tsushima Current during the early Pleistocene in the Sea of Japan: An example from Marine Isotope Stage (MIS) 47. Global and Planetary Change, 92, 162 – 178.
dc.identifier.citedreferenceHu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., et al. ( 2015 ). Pacific Western boundary currents and their roles in climate. Nature, 522 ( 7556 ), 299 – 308.
dc.identifier.citedreferenceHuybers, P., & Moar, P. ( 2007 ). Tropical cooling and the onset of North American glaciation. Climate of the Past, 3 ( 3 ), 549 – 557.
dc.identifier.citedreferenceImawaki, S., Bower, A. S., Beal, L., & Qiu, B. ( 2013 ). Western boundary currents. International Geophysics, 103, 305 – 338.
dc.identifier.citedreferenceIngram, W. C., Meyers, S. R., Brunner, C. A., & Martens, C. S. ( 2010 ). Late Pleistocene-Holocene sedimentation surrounding an active seafloor gas-hydrate and cold-seep field on the Northern Gulf of Mexico slope. Marine Geology, 278, 45 – 53.
dc.identifier.citedreferenceIPCC. ( 2021 ). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Cambridge University Press.
dc.identifier.citedreferenceIsono, D., Yamamoto, M., Irino, T., Oba, T., Murayama, M., Nakamura, T., & Kawahata, H. ( 2009 ). The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology, 37 ( 7 ), 591 – 594.
dc.identifier.citedreferenceIto, M., & Horikawa, K. ( 2000 ). Millennial-to decadal-scale fluctuation in the paleo-Kuroshio Current documented in the Middle Pleistocene shelf succession on the Boso Peninsula, Japan. Sedimentary Geology, 137 ( 1–2 ), 1 – 8.
dc.identifier.citedreferenceJaccard, S. L., Galbraith, E. D., Sigman, D. M., Haug, G. H., Francois, R., Pedersen, T. F., et al. ( 2009 ). Geochemistry of ODP Site 145-882. PANGAEA. https://doi.org/10.1594/PANGAEA.716782
dc.identifier.citedreferenceJaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., & Röhl, U. ( 2005 ). Glacial/interglacial changes in subarctic North Pacific stratification. Science, 308 ( 5724 ), 1003 – 1006.
dc.identifier.citedreferenceJacobi, R. D., & Hayes, D. E. ( 1989 ). Sedimentary effects of interplay between the Kuroshio Extension and Pacific plate motion. Geological Society of America Bulletin, 101 ( 4 ), 549 – 560.
dc.identifier.citedreferenceJaeschke, A., Rühlemann, C., Arz, H., Heil, G., & Lohmann, G. ( 2007 ). Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography, 22, PA4206. https://doi.org/10.1029/2006PA001391
dc.identifier.citedreferenceJansen, J. H. F., Van der Gaast, S. J., Koster, B., & Vaars, A. J. ( 1998 ). CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology, 151 ( 1–4 ), 143 – 153.
dc.identifier.citedreferenceJia, J., Lu, H., Wang, Y., & Xia, D. ( 2018 ). Variations in the iron mineralogy of a loess section in Tajikistan during the Mid-Pleistocene and Late Pleistocene: Implications for the climatic evolution in central Asia. Geochemistry, Geophysics, Geosystems, 19, 1244 – 1258. https://doi.org/10.1002/2017GC007371
dc.identifier.citedreferenceJian, Z. ( 1998 ). Stable isotopic records of the glacial deep-water properties in the South China Sea. Science in China-Series D: Earth Sciences, 41 ( 4 ), 337 – 344.
dc.identifier.citedreferenceJian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., & Cheng, X. ( 2000 ). Holocene variability of the Kuroshio Current in the Okinawa trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184 ( 1 ), 305 – 319.
dc.identifier.citedreferenceJimenez-Espejo, F. J., Presti, M., Kuhn, G., Mckay, R., Crosta, X., Escutia, C., et al. ( 2020 ). Late Pleistocene oceanographic and depositional variations along the Wilkes Land margin (East Antarctica) reconstructed with geochemical proxies in deep-sea sediments. Global and Planetary Change, 184, 103045.
dc.identifier.citedreferenceJouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffman, G., et al. ( 2007 ). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317 ( 5839 ), 793 – 796.
dc.identifier.citedreferenceKathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang, H., et al. ( 2016 ). Indian monsoon variability on millennial-orbital timescales. Scientific Reports, 6 ( 1 ), 24374.
dc.identifier.citedreferenceKawahata, H., & Ohshima, H. ( 2002 ). Small latitudinal shift in the Kuroshio extension (central Pacific) during glacial times: Evidence from pollen transport. Quaternary Science Reviews, 21 ( 14–15 ), 1705 – 1717.
dc.identifier.citedreferenceKawahata, H., & Ohshima, H. ( 2004 ). Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Global and Planetary Change, 41 ( 3–4 ), 251 – 273.
dc.identifier.citedreferenceKitamura, A., & Kimoto, K. ( 2006 ). History of the inflow of the warm Tsushima current into the sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 236 ( 3–4 ), 355 – 366.
dc.identifier.citedreferenceKitamura, A., Matsui, H., & Oda, M. ( 1999 ). Change in the thickness of the warm Tsushima Current at the initiation of its flow into the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 152 ( 3–4 ), 305 – 318.
dc.identifier.citedreferenceKwiecien, O., Arz, H. W., Lamy, F., Plessen, B., Bahr, A., & Haug, G. H. ( 2009 ). North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quaternary Research, 71 ( 3 ), 375 – 384.
dc.identifier.citedreferenceKwon, Y. O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B., & Thompson, L. A. ( 2010 ). Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. Journal of Climate, 23 ( 12 ), 3249 – 3281.
dc.identifier.citedreferenceLam, A. R., & Leckie, R. M. ( 2020a ). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology, 66 ( 3 ), 177 – 268.
dc.identifier.citedreferenceLam, A. R., & Leckie, R. M. ( 2020b ). Subtropical to temperate late Neogene to Quaternary planktic foraminiferal biostratigraphy across the Kuroshio Current Extension, Shatsky Rise, northwest Pacific Ocean. PLoS One, 15 ( 7 ), e0234351.
dc.identifier.citedreferenceLam, A. R., Leckie, R. M., & Patterson, M. O. ( 2020 ). Illuminating the past to see the future of Western boundary currents. Oceanography, 33 ( 2 ), 65 – 67.
dc.identifier.citedreferenceLam, A. R., MacLeod, K. G., Schilling, S. H., Leckie, R. M., Fraass, A. J., Patterson, M. O., & Venti, N. L. ( 2021 ). Pliocene to earliest Pleistocene (5–2.5 Ma) reconstruction of the Kuroshio Current Extension Reveals a dynamic current. Paleoceanography and Paleoclimatology, 36, e2021PA004318. https://doi.org/10.1029/2021PA004318
dc.identifier.citedreferenceLang, N., & Wolff, E. W. ( 2011 ). Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past, 7 ( 2 ), 361 – 380.
dc.identifier.citedreferenceLaskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. ( 2004 ). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428 ( 1 ), 261 – 285.
dc.identifier.citedreferenceLatif, M., & Barnett, T. P. ( 1994 ). Causes of decadal climate variability over the North Pacific and North America. Science, 266 ( 5185 ), 634 – 637.
dc.identifier.citedreferenceLatif, M., & Barnett, T. P. ( 1996 ). Decadal climate variability over the North Pacific and North America: Dynamics and predictability. Journal of Climate, 9 ( 10 ), 2407 – 2423.
dc.identifier.citedreferenceLiang, L., Sun, Y., Beets, C. J., Prins, M. A., Wu, F., & Vandenberghe, J. ( 2013 ). Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau. Journal of Asian Earth Sciences, 69, 177 – 184.
dc.identifier.citedreferenceLindberg, K. R., Daniels, W. C., Castañeda, I. S., & Brigham-Grette, J. ( 2022 ). Biomarker proxy records of Arctic climate change during the mid-Pleistocene transition from Lake El’gygytgyn (far east Russia). Climate of the Past, 18 ( 3 ), 559 – 577.
dc.identifier.citedreferenceLisiecki, L. E., & Raymo, M. E. ( 2005 ). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071
dc.identifier.citedreferenceLiu, L., Chen, J., Chen, Y., Ji, J., & Lu, H. ( 2002 ). Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon. Chinese Science Bulletin, 47 ( 15 ), 1298 – 1302.
dc.identifier.citedreferenceLiu, Z. ( 2004 ). Pleistocene climate evolution in the eastern Pacific and implications for the orbital theory of climate change. Brown University.
dc.identifier.citedreferenceLiu, Z., Altabet, M. A., & Herbert, T. D. ( 2005 ). Glacial-interglacial modulation of eastern tropical North Pacific denitrification over the last 1.8-Myr. Geophysical Research.
dc.identifier.citedreferenceLocarini, R. A., Mishonov, A. V., & Antonov, J. I. ( 2013 ). World Ocean Atlas 2013, Volume 1: Temperature (NOAA Atlas NESDIS 73) (p. 40 ). NOAA.
dc.identifier.citedreferenceLong, Y., Zhu, X. H., & Guo, X. ( 2019 ). The Oyashio nutrient stream and its nutrient transport to the mixed water region. Geophysical Research Letters, 46, 1513 – 1520. https://doi.org/10.1029/2018GL081497
dc.identifier.citedreferenceLyle, M., Olivarez Lyle, A., Gorgas, T., Holbourn, A., Westerhold, T., Hathorne, E., et al. ( 2012 ). Data report: Raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning. Proceedings of the Integrated Ocean Drilling Program, 320, 321.
dc.identifier.citedreferenceMachalett, B., Oches, E. A., Frechen, M., Zöller, L., Hambach, U., Mavlyanova, N. G., et al. ( 2008 ). Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry, Geophysics, Geosystems, 9, Q08Q09. https://doi.org/10.1029/2007GC001938
dc.identifier.citedreferenceMann, M. E., & Lees, J. M. ( 1996 ). Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33 ( 3 ), 409 – 445.
dc.identifier.citedreferenceMartínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R., & Haug, G. H. ( 2010 ). Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science, 328 ( 5985 ), 1550 – 1553.
dc.identifier.citedreferenceMcCarron, A. P., Bigg, G. R., Brooks, H., Leng, M. J., Marshall, J. D., Ponomareva, V., et al. ( 2021 ). Northwest Pacific ice-rafted debris at 38°N reveals episodic ice-sheet change in late Quaternary Northeast Siberia. Earth and Planetary Science Letters, 553, 116650. https://doi.org/10.1016/j.epsl.2020.116650
dc.identifier.citedreferenceMedina-Elizalde, M., Perritano, S., DeCesare, M., Polanco-Martinez, J., Serrato-Marks, G., McGee, D., & Lases-Hernandez, F. ( 2021 ). Holocene hydroclimate in the southeastern United States during abrupt climate events: Evidence from new speleothem isotopic records from Alabama.
dc.identifier.citedreferenceMelles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., et al. ( 2012 ). 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science, 337 ( 6092 ), 315 – 320.
dc.identifier.citedreferenceMeyers, S. R. ( 2012 ). Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology. Paleoceanography, 27, PA3228. https://doi.org/10.1029/2012PA002307
dc.identifier.citedreferenceMeyers, S. R. ( 2014 ). Astrochron: An R package for astrochronology.
dc.identifier.citedreferenceMeyers, S. R. ( 2015 ). The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography, 30, 1625 – 1640. https://doi.org/10.1002/2015PA002850
dc.identifier.citedreferenceMeyers, S. R. ( 2019 ). Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190, 190 – 223.
dc.identifier.citedreferenceMeyers, S. R., Sageman, B. B., & Hinnov, L. A. ( 2001 ). Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71 ( 4 ), 628 – 644.
dc.identifier.citedreferenceMiller, A. J., Cayan, D. R., & White, W. B. ( 1998 ). A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate, 11 ( 12 ), 3112 – 3127.
dc.identifier.citedreferenceNakamura, H., Sampe, T., Tanimoto, Y., & Shimpo, A. ( 2004 ). Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph, 147, 329 – 345.
dc.identifier.citedreferenceNewman, M., Compo, G. P., & Alexander, M. A. ( 2003 ). ENSO-forced variability of the Pacific decadal oscillation. Journal of Climate, 16 ( 23 ), 3853 – 3857.
dc.identifier.citedreferenceNishikawa, H., Nishikawa, S., Ishizaki, H., Wakamatsu, T., & Ishikawa, Y. ( 2020 ). Detection of the Oyashio and Kuroshio fronts under the projected climate change in the 21 st century. Progress in Earth and Planetary Science, 7 ( 1 ), 29.
dc.identifier.citedreferencePatterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J., Raymo, M. E., et al. ( 2014 ). IODP Expedition 318 Scientists Orbital forcing of the east Antarctic ice sheet during the Pliocene and early Pleistocene. Nature Geoscience, 7 ( 11 ), 841 – 847.
dc.identifier.citedreferencePenkrot, M. L., Jaeger, J. M., Cowan, E. A., St-Onge, G., & LeVay, L. ( 2018 ). Multivariate modeling of glacimarine lithostratigraphy combining scanning XRF, multisensory core properties, and CT imagery: IODP Site U1419. Geosphere, 14 ( 4 ), 1935 – 1960.
dc.identifier.citedreferencePiva, A., Asioli, A., Schneider, R. R., Trincardi, F., Andersen, N., Colmenero-Hidalgo, E., et al. ( 2008 ). Climatic cycles as expressed in sediments of the PROMESSI borehole PRAD1-2, central Adriatic, for the last 370 ka: 1. Integrated stratigraphy. Geochemistry, Geophysics, Geosystems, 9, Q01R01. https://doi.org/10.1029/2007GC001713
dc.identifier.citedreferenceProistosescu, C., Huybers, P., & Maloof, A. C. ( 2012 ). To tune or not to tune: Detecting orbital variability in Oligo-Miocene climate records. Earth and Planetary Science Letters, 325, 100 – 107.
dc.identifier.citedreferenceRavelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., & Wara, M. W. ( 2004 ). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429 ( 6989 ), 263 – 267.
dc.identifier.citedreferenceR Core Team. ( 2017 ). R: A language and environment for statistical computing.
dc.identifier.citedreferenceReilly, B. T., Tauxe, L., Brachfeld, S., Raymo, M., Bailey, I., & Hemming, S. ( 2021 ). New magnetostratigraphic insights from Iceberg Alley on the rhythms of Antarctic climate during the Plio-Pleistocene. Paleoceanography and Paleoclimatology, 36, e2020PA003994. https://doi.org/10.1029/2020PA003994
dc.identifier.citedreferenceRial, J. A., & Anaclerio, C. A. ( 2000 ). Understanding nonlinear responses of the climate system to orbital forcing. Quaternary Science Reviews, 19 ( 17–18 ), 1709 – 1722.
dc.identifier.citedreferenceSakamoto, T. T., Hasumi, H., Ishii, M., Emori, S., Suzuki, T., Nishimura, T., & Sumi, A. ( 2005 ). Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophysical Research Letters, 32, L14617. https://doi.org/10.1029/2005GL023384
dc.identifier.citedreferenceSakurai, Y. ( 2007 ). An overview of the Oyashio ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 23–26 ), 2526 – 2542.
dc.identifier.citedreferenceSchlitzer, R. ( 2015 ). Ocean data view.
dc.identifier.citedreferenceSchneider, N., & Cornuelle, B. D. ( 2005 ). The forcing of the Pacific decadal oscillation. Journal of Climate, 18 ( 21 ), 4355 – 4373.
dc.identifier.citedreferenceSt John, K. E. K., & Krissek, L. A. ( 1999 ). Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific. Paleoceanography, 14 ( 5 ), 653 – 662.
dc.identifier.citedreferenceSun, Y., & An, Z. ( 2005 ). Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. Journal of Geophysical Research, 110, D23101. https://doi.org/10.1029/2005JD006064
dc.identifier.citedreferenceSutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., et al. ( 2019 ). Expedition 371 summary. In R. Sutherland, G. R. Dickens, P. Blum & the Expedition 371 Scientists (Eds.), Tasman Frontier Subduction Initiation and Paleogene Climate. Proceedings of the International Ocean Discovery Program, 371. International Ocean Discovery Program.
dc.identifier.citedreferenceTaylor, S. ( 2021 ). Hole 1207A (0-2.2 Ma) XRF Paleoceanography and Paleoclimatology Files. Figshare [Collection]. https://doi.org/10.6084/m9.figshare.c.5719136.v1
dc.identifier.citedreferenceTempl, M., Filzmoser, P., & Reimann, C. ( 2008 ). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23 ( 8 ), 2198 – 2213.
dc.identifier.citedreferenceThomas, E. K., Clemens, S. C., Prell, W. L., Herbert, T. D., Huang, Y., Liu, Z., et al. ( 2014 ). Temperature and leaf wax δ 2 H records demonstrate seasonal and regional controls on Asian monsoon proxies. Geology, 42, 1075 – 1078.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.