Show simple item record

Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization

dc.contributor.authorWang, Ping
dc.contributor.authorLee, Woncheol
dc.contributor.authorCorbett, Joseph P.
dc.contributor.authorKoll, William H.
dc.contributor.authorVu, Nguyen M.
dc.contributor.authorLaleyan, David Arto
dc.contributor.authorWen, Qiannan
dc.contributor.authorWu, Yuanpeng
dc.contributor.authorPandey, Ayush
dc.contributor.authorGim, Jiseok
dc.contributor.authorWang, Ding
dc.contributor.authorQiu, Diana Y.
dc.contributor.authorHovden, Robert
dc.contributor.authorKira, Mackillo
dc.contributor.authorHeron, John T.
dc.contributor.authorGupta, Jay A.
dc.contributor.authorKioupakis, Emmanouil
dc.contributor.authorMi, Zetian
dc.date.accessioned2022-06-01T20:29:56Z
dc.date.available2023-06-01 16:29:53en
dc.date.available2022-06-01T20:29:56Z
dc.date.issued2022-05
dc.identifier.citationWang, Ping; Lee, Woncheol; Corbett, Joseph P.; Koll, William H.; Vu, Nguyen M.; Laleyan, David Arto; Wen, Qiannan; Wu, Yuanpeng; Pandey, Ayush; Gim, Jiseok; Wang, Ding; Qiu, Diana Y.; Hovden, Robert; Kira, Mackillo; Heron, John T.; Gupta, Jay A.; Kioupakis, Emmanouil; Mi, Zetian (2022). "Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization." Advanced Materials 34(21): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/172829
dc.description.abstractMonolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface-mediated growth process for the controlled synthesis of high-quality monolayer hBN is proposed and further demonstrated. It is discovered that the in-plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moir� superlattice consistent with single-domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep-ultraviolet emission at 6.12�eV stems from the 1s-exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer-scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.Controllable synthesis of monolayer hexagonal boron nitride (hBN) has remained a daunting challenge. An hBN/graphene-interface-mediated growth concept to enable scalable epitaxy of unidirectional high-quality monolayer hBN on graphene substrates is proposed and demonstrated. A uniform moir� superlattice and robust deep-ultraviolet excitonic emission (around 6.12 eV) are achieved in such a monolayer hBN/graphene van der Waals heterostructure.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermoir� superlattices
dc.subject.othermonolayer hexagonal boron nitride
dc.subject.other2D heterostructures
dc.subject.otherbandgap
dc.subject.othergraphene
dc.titleScalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172829/1/adma202201387_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172829/2/adma202201387-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172829/3/adma202201387.pdf
dc.identifier.doi10.1002/adma.202201387
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceJ. Gigliotti, X. Li, S. Sundaram, D. Deniz, V. Prudkovskiy, J.-P. Turmaud, Y. Hu, Y. Hu, F. Fossard, J.-S. M�rot, A. Loiseau, G. Patriarche, B. Yoon, U. Landman, A. Ougazzaden, C. Berger, W. A. d. Heer, ACS Nano 2020, 14, 12962.
dc.identifier.citedreferenceG. Cassabois, P. Valvin, B. Gil, Phys. Rev. B 2016, 93, 035207.
dc.identifier.citedreferenceG. Cassabois, P. Valvin, B. Gil, Nat. Photonics 2016, 10, 262.
dc.identifier.citedreferenceE. Cannuccia, B. Monserrat, C. Attaccalite, Phys. Rev. B 2019, 99, 081109.
dc.identifier.citedreferenceD. Zhang, D.-B. Zhang, F. Yang, H.-Q. Lin, H. Xu, K. Chang, 2D Mater. 2015, 2, 041001.
dc.identifier.citedreferenceC. Leon, M. Costa, L. Chico, A. Latg�, Sci. Rep. 2019, 9, 3508.
dc.identifier.citedreferenceS. Li, Z. Ren, J. Zheng, Y. Zhou, Y. Wan, L. Hao, J. Appl. Phys. 2013, 113, 033703.
dc.identifier.citedreferenceJ. Mannhart, D. G. Schlom, Science 2010, 327, 1607.
dc.identifier.citedreferenceP. Yu, Y.-H. Chu, R. Ramesh, Mater. Today 2012, 15, 320.
dc.identifier.citedreferenceJ. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J.-H. Park, B. G. Shin, H. Ko, S. H. Lee, Y.-M. Kim, Science 2018, 362, 817.
dc.identifier.citedreferenceL. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, Nature 2019, 570, 91.
dc.identifier.citedreferenceT.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H.-S. P. Wong, S. Pan, R. Li, T.-A. Chao, W.-C. Chueh, Y. Zhang, Nature 2020, 579, 219.
dc.identifier.citedreferenceF. Liu, Y. Yu, Y. Zhang, X. Rong, T. Wang, X. Zheng, B. Sheng, L. Yang, J. Wei, X. Wang, X. Li, X. Yang, F. Xu, Z. Qin, Z. Zhang, B. Shen, X. Wang, Adv. Sci. 2020, 7, 2000917.
dc.identifier.citedreferenceY.-J. Cho, A. Summerfield, A. Davies, T. S. Cheng, E. F. Smith, C. J. Mellor, A. N. Khlobystov, C. T. Foxon, L. Eaves, P. H. Beton, S. V. Novikov, Sci. Rep. 2016, 6, 34474.
dc.identifier.citedreferenceJ. Meng, X. Zhang, Y. Wang, Z. Yin, H. Liu, J. Xia, H. Wang, J. You, P. Jin, D. Wang, Small 2017, 13, 1604179.
dc.identifier.citedreferenceG. Lu, T. Wu, P. Yang, Y. Yang, Z. Jin, W. Chen, S. Jia, H. Wang, G. Zhang, J. Sun, Adv. Sci. 2017, 4, 1700076.
dc.identifier.citedreferenceS. H. Lee, H. Jeong, O. F. N. Okello, S. Xiao, S. Moon, D. Y. Kim, G.-Y. Kim, J.-I. Lo, Y.-C. Peng, B.-M. Cheng, Sci. Rep. 2019, 9, 10590.
dc.identifier.citedreferenceD. A. Laleyan, K. Mengle, S. Zhao, Y. Wang, E. Kioupakis, Z. Mi, Opt. Express 2018, 26, 23031.
dc.identifier.citedreferenceX. Chen, H. Yang, B. Wu, L. Wang, Q. Fu, Y. Liu, Adv. Mater. 2019, 31, 1805582.
dc.identifier.citedreferenceJ. Wrigley, J. Bradford, T. James, T. S. Cheng, J. Thomas, C. J. Mellor, A. N. Khlobystov, L. Eaves, C. T. Foxon, S. V. Novikov, 2D Mater. 2021, 8, 034001.
dc.identifier.citedreferenceG. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek, Rev. Mod. Phys. 2018, 90, 021001.
dc.identifier.citedreferenceM. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B. J. LeRoy, Nat. Phys. 2012, 8, 382.
dc.identifier.citedreferenceG. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Nature 2019, 572, 215.
dc.identifier.citedreferenceC. Elias, P. Valvin, T. Pelini, A. Summerfield, C. Mellor, T. Cheng, L. Eaves, C. Foxon, P. Beton, S. Novikov, Nat. Commun. 2019, 10, 2639.
dc.identifier.citedreferenceR. J. P. Rom�n, F. J. Costa, A. Zobelli, C. Elias, P. Valvin, G. Cassabois, B. Gil, A. Summerfield, T. S. Cheng, C. J. Mellor, 2D Mater. 2021, 8, 044001.
dc.identifier.citedreferenceT. Galvani, F. Paleari, H. P. Miranda, A. Molina-S�nchez, L. Wirtz, S. Latil, H. Amara, F. Ducastelle, Phys. Rev. B 2016, 94, 125303.
dc.identifier.citedreferenceF. Ferreira, A. Chaves, N. Peres, R. Ribeiro, J. Opt. Soc. Am. B 2019, 36, 674.
dc.identifier.citedreferenceK. Mengle, E. Kioupakis, APL Mater. 2019, 7, 021106.
dc.identifier.citedreferenceP. Wang, A. Pandey, J. Gim, W. J. Shin, E. T. Reid, D. A. Laleyan, Y. Sun, D. Zhang, Z. Liu, Z. Zhong, R. Hovden, Z. Mi, Appl. Phys. Lett. 2020, 116, 171905.
dc.identifier.citedreferenceF. Liu, Z. Zhang, X. Rong, Y. Yu, T. Wang, B. Sheng, J. Wei, S. Zhou, X. Yang, F. Xu, Z. Qin, Y. Zhang, K. Liu, B. Shen, X. Wang, Adv. Funct. Mater. 2020, 30, 2001283.
dc.identifier.citedreferenceD. A. Laleyan, N. Fern�ndez-Delgado, E. T. Reid, P. Wang, A. Pandey, G. A. Botton, Z. Mi, Appl. Phys. Lett. 2020, 116, 152102.
dc.identifier.citedreferenceF. Liu, X. Rong, Y. Yu, T. Wang, B. Sheng, J. Wei, S. Liu, J. Yang, F. Bertram, F. Xu, X. Yang, Z. Zhang, Z. Qin, Y. Zhang, B. Shen, X. Wang, Appl. Phys. Lett. 2020, 116, 142104.
dc.identifier.citedreferenceS. Liu, Y. Yuan, S. Sheng, T. Wang, J. Zhang, L. Huang, X. Zhang, J. Kang, W. Luo, Y. Li, H. Wang, W. Wang, C. Xiao, Y. Liu, Q. Wang, X. Wang, J. Semicond. 2021, 42, 122804.
dc.identifier.citedreferenceD. Wang, K. Uesugi, S. Xiao, K. Norimatsu, H. Miyake, Appl. Phys. Express 2020, 13, 095501.
dc.identifier.citedreferenceA. Rousseau, L. Ren, A. Durand, P. Valvin, B. Gil, K. Watanabe, T. Taniguchi, B. Urbaszek, X. Marie, C. Robert, Nano Lett. 2021, 21, 10133.
dc.identifier.citedreferenceM. M. Ugeda, A. J. Bradley, S.-F. Shi, H. Felipe, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, Nat. Mater. 2014, 13, 1091.
dc.identifier.citedreferenceZ. -F. Liu, F. H. da Jornada, S. G. Louie, J. B. Neaton, J. Chem. Theory Comput. 2019, 15, 4218.
dc.identifier.citedreferenceD. Y. Qiu, F. H. da Jornada, S. G. Louie, Nano Lett. 2017, 17, 4706.
dc.identifier.citedreferenceS. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. List-Kratochvil, P. Amsalem, N. Koch, 2D Mater. 2018, 5, 025003.
dc.identifier.citedreferenceY. Wang, S. Zhang, D. Huang, J. Cheng, Y. Li, S. Wu, 2D Mater. 2016, 4, 015021.
dc.identifier.citedreferenceT. Vuong, S. Liu, A. Van der Lee, R. Cusc�, L. Art�s, T. Michel, P. Valvin, J. Edgar, G. Cassabois, B. Gil, Nat. Mater. 2018, 17, 152.
dc.identifier.citedreferenceJ. Koskelo, G. Fugallo, M. Hakala, M. Gatti, F. Sottile, P. Cudazzo, Phys. Rev. B 2017, 95, 035125.
dc.identifier.citedreferenceF. Liu, M. E. Ziffer, K. R. Hansen, J. Wang, X. Zhu, Phys. Rev. Lett. 2019, 122, 246803.
dc.identifier.citedreferenceH. Yang, X. Wang, X. Li, Phys. Rev. B 2021, 104, 205307.
dc.identifier.citedreferenceB. Arnaud, S. Leb�gue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 2006, 96, 026402.
dc.identifier.citedreferenceH. Mishra, S. Bhattacharya, Phys. Rev. B 2019, 99, 165201.
dc.identifier.citedreferenceM. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
dc.identifier.citedreferenceK. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 2004, 3, 404.
dc.identifier.citedreferenceA. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
dc.identifier.citedreferenceX. Wang, F. Xia, Nat. Mater. 2015, 14, 264.
dc.identifier.citedreferenceM. Yankowitz, Q. Ma, P. Jarillo-Herrero, B. J. LeRoy, Nat. Rev. Phys. 2019, 1, 112.
dc.identifier.citedreferenceL. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. Peres, Nano Lett. 2012, 12, 1707.
dc.identifier.citedreferenceA. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
dc.identifier.citedreferenceA. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, P. Kim, Nat. Phys. 2012, 8, 550.
dc.identifier.citedreferenceL. Wang, Y. Gao, B. Wen, Z. Han, T. Taniguchi, K. Watanabe, M. Koshino, J. Hone, C. R. Dean, Science 2015, 350, 1231.
dc.identifier.citedreferenceA. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonz�lez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, Nat. Mater. 2015, 14, 421.
dc.identifier.citedreferenceS. Bhowmick, A. K. Singh, B. I. Yakobson, J. Phys. Chem. C 2011, 115, 9889.
dc.identifier.citedreferenceJ. Zhang, W. Xie, X. Xu, S. Zhang, J. Zhao, Chem. Mater. 2016, 28, 5022.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.