Show simple item record

HectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology

dc.contributor.authorVöröslakos, Mihály
dc.contributor.authorKim, Kanghwan
dc.contributor.authorSlager, Nathan
dc.contributor.authorKo, Eunah
dc.contributor.authorOh, Sungjin
dc.contributor.authorParizi, Saman S.
dc.contributor.authorHendrix, Blake
dc.contributor.authorSeymour, John P.
dc.contributor.authorWise, Kensall D.
dc.contributor.authorBuzsáki, György
dc.contributor.authorFernández-Ruiz, Antonio
dc.contributor.authorYoon, Euisik
dc.date.accessioned2022-07-05T20:59:30Z
dc.date.available2023-07-05 16:59:27en
dc.date.available2022-07-05T20:59:30Z
dc.date.issued2022-06
dc.identifier.citationVöröslakos, Mihály ; Kim, Kanghwan; Slager, Nathan; Ko, Eunah; Oh, Sungjin; Parizi, Saman S.; Hendrix, Blake; Seymour, John P.; Wise, Kensall D.; Buzsáki, György ; Fernández-Ruiz, Antonio ; Yoon, Euisik (2022). "HectoSTAR μLED Optoelectrodes for Large- Scale, High- Precision In Vivo Opto- Electrophysiology." Advanced Science 9(18): n/a-n/a.
dc.identifier.issn2198-3844
dc.identifier.issn2198-3844
dc.identifier.urihttps://hdl.handle.net/2027.42/172921
dc.description.abstractDynamic interactions within and across brain areas underlie behavioral and cognitive functions. To understand the basis of these processes, the activities of distributed local circuits inside the brain of a behaving animal must be synchronously recorded while the inputs to these circuits are precisely manipulated. Even though recent technological advances have enabled such large-scale recording capabilities, the development of the high-spatiotemporal-resolution and large-scale modulation techniques to accompany those recordings has lagged. A novel neural probe is presented in this work that enables simultaneous electrical monitoring and optogenetic manipulation of deep neuronal circuits at large scales with a high spatiotemporal resolution. The “hectoSTAR” micro-light-emitting-diode (μLED) optoelectrode features 256 recording electrodes and 128 stimulation μLEDs monolithically integrated on the surface of its four 30-µm thick silicon micro-needle shanks, covering a large volume with 1.3-mm × 0.9-mm cross-sectional area located as deep as 6 mm inside the brain. The use of this device in behaving mice for dissecting long-distance network interactions across cortical layers and hippocampal regions is demonstrated. The recording-and-stimulation capabilities hectoSTAR μLED optoelectrodes enables will open up new possibilities for the cellular and circuit-based investigation of brain functions in behaving animals.A novel neural probe that enables simultaneous electrophysiological recording and optogenetic manipulation of deep neuronal circuits at large scales with a high spatiotemporal resolution is presented. The hectoSTAR micro-light-emitting-diode (μLED) optoelectrode, featuring 256 recording electrodes and 128 stimulation μLEDs densely integrated on the tip of four micro-needles, allows for cellular and circuit-based brain mapping in behaving animals.
dc.publisherClarendon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherμLED
dc.subject.otherlarge-scale optoelectrophysiology
dc.subject.otherneural probe
dc.subject.otherneuronal ensembles
dc.subject.otheroptogenetics
dc.titleHectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172921/1/advs3883_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172921/2/advs3883-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172921/3/advs3883.pdf
dc.identifier.doi10.1002/advs.202105414
dc.identifier.sourceAdvanced Science
dc.identifier.citedreferenceA. K. Lee, M. A. Wilson, Neuron 2002, 36, 1183.
dc.identifier.citedreferenceP. Bartho, H. Hirase, L. Monconduit, M. Zugaro, K. D. Harris, G. Buzsaki, J. Neurophysiol. 2004, 92, 600.
dc.identifier.citedreferenceV. Lopes-Dos-Santos, G. M. van de Ven, A. Morley, S. Trouche, N. Campo-Urriza, D. Dupret, Neuron 2018, 100, 940.
dc.identifier.citedreferenceA. Oliva, A. Fernandez-Ruiz, G. Buzsaki, A. Berenyi, Neuron 2016, 91, 1342.
dc.identifier.citedreferenceK. Diba, G. Buzsaki, Nat. Neurosci. 2007, 10, 1241.
dc.identifier.citedreferenceD. J. Foster, M. A. Wilson, Nature 2006, 440, 680.
dc.identifier.citedreferenceT. Klausberger, P. Somogyi, Science 2008, 321, 53.
dc.identifier.citedreferenceJ. O’Neill, T. Senior, J. Csicsvari, Neuron 2006, 49, 143.
dc.identifier.citedreferenceD. J. Foster, Annu. Rev. Neurosci. 2017, 40, 581.
dc.identifier.citedreferenceP. C. Petersen, J. H. Siegle, N. A. Steinmetz, S. Mahallati, G. Buzsaki, bioRxiv 2020, 2020.05.07.083436.
dc.identifier.citedreferenceZ. Nadasdy, H. Hirase, A. Czurko, J. Csicsvari, G. Buzsaki, J. Neurosci. 1999, 19, 9497.
dc.identifier.citedreferenceM. P. Karlsson, L. M. Frank, Nat. Neurosci. 2009, 12, 913.
dc.identifier.citedreferenceT. Stieglitz, H. Beutel, J. U. Meyer, J. Intell. Mater. Syst. Struct. 2000, 11, 417.
dc.identifier.citedreferenceJ. E. Chung, H. R. Joo, J. L. Fan, D. F. Liu, A. H. Barnett, S. Chen, C. Geaghan-Breiner, M. P. Karlsson, M. Karlsson, K. Y. Lee, H. Liang, J. F. Magland, J. A. Pebbles, A. C. Tooker, L. F. Greengard, V. M. Tolosa, L. M. Frank, Neuron 2019, 101, 21.
dc.identifier.citedreferenceJ. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Z. Suo, Y. Fang, C. M. Lieber, Nat. Nanotechnol. 2015, 10, 629.
dc.identifier.citedreferenceE. Musk, Journal of Medical Internet Research 2019, 21, e16194.
dc.identifier.citedreferenceK. N. Chung, J. Y. Sui, B. Demory, C. H. Teng, P. C. Ku, Appl. Phys. Lett. 2017, 110, 111103.
dc.identifier.citedreferenceX. Liu, Y. Wu, Y. Malhotra, Y. Sun, Y.-H. Ra, R. Wang, M. Stevenson, S. Coe-Sullivan, Z. Mi, J. Soc. Inf. Disp. 2020, 28, 410.
dc.identifier.citedreferenceY. Robin, F. Hemeret, G. D’Inca, M. Pristovsek, A. Trassoudaine, H. Amano, Jpn. J. Appl. Phys. 2019, 58, SCCC06.
dc.identifier.citedreferenceZ. Pan, C. Guo, X. Wang, J. Liu, R. Cao, Y. Gong, J. Wang, N. Liu, Z. Chen, L. Wang, M. Ishikawa, Z. Gong, Adv. Mater. Technol. 2020, 5, 2000549.
dc.identifier.citedreferenceJ. W. Reddy, I. Kimukin, L. T. Stewart, Z. Ahmed, A. L. Barth, E. Towe, M. Chamanzar, Front. Neurosci. 2019, 13, 745.
dc.identifier.citedreferenceN. Yulianto, A. D. Refino, A. Syring, N. Majid, S. Mariana, P. Schnell, R. A. Wahyuono, K. Triyana, F. Meierhofer, W. Daum, F. F. Abdi, T. Voss, H. S. Wasisto, A. Waag, Microsyst. Nanoeng. 2021, 7, 32.
dc.identifier.citedreferenceS. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, Med. Phys. 1993, 20, 299.
dc.identifier.citedreferenceY. Yang, M. Wu, A. Vazquez-Guardado, A. J. Wegener, J. G. Grajales-Reyes, Y. Deng, T. Wang, R. Avila, J. A. Moreno, S. Minkowicz, V. Dumrongprechachan, J. Lee, S. Zhang, A. A. Legaria, Y. Ma, S. Mehta, D. Franklin, L. Hartman, W. Bai, M. Han, H. Zhao, W. Lu, Y. Yu, X. Sheng, A. Banks, X. Yu, Z. R. Donaldson, R. W. t. Gereau, C. H. Good, et al., Nat. Neurosci. 2021, 24, 1035.
dc.identifier.citedreferenceH. H. Pennes, J. Appl. Physiol. 1948, 1, 93.
dc.identifier.citedreferenceL. Hazan, M. Zugaro, G. Buzsaki, J. Neurosci. Methods 2006, 155, 207.
dc.identifier.citedreferenceJ. E. Osborne, J. T. Dudman, PLoS One 2014, 9, e89007.
dc.identifier.citedreferenceJ. Jackson, M. M. Karnani, B. V. Zemelman, D. Burdakov, A. K. Lee, Neuron 2018, 99, 1029.
dc.identifier.citedreferenceY. Senzai, A. Fernandez-Ruiz, G. Buzsaki, Neuron 2019, 101, 500.
dc.identifier.citedreferenceA. Fernandez-Ruiz, A. Oliva, G. A. Nagy, A. P. Maurer, A. Berenyi, G. Buzsaki, Neuron 2017, 93, 1213.
dc.identifier.citedreferenceA. Fernandez-Ruiz, V. A. Makarov, N. Benito, O. Herreras, J. Neurosci. 2012, 32, 5165.
dc.identifier.citedreferenceV. J. Lopez-Madrona, E. Perez-Montoyo, E. Alvarez-Salvado, D. Moratal, O. Herreras, E. Pereda, C. R. Mirasso, S. Canals, eLife 2020, 9, 1.
dc.identifier.citedreferenceF. Sharif, B. Tayebi, G. Buzsaki, S. Royer, A. Fernandez-Ruiz, Neuron 2021, 109, 363.
dc.identifier.citedreferenceJ. Yamamoto, J. Suh, D. Takeuchi, S. Tonegawa, Cell 2014, 157, 845.
dc.identifier.citedreferenceL. Zhang, J. Lee, C. Rozell, A. C. Singer, eLife 2019, 8, e44320.
dc.identifier.citedreferenceE. W. Schomburg, A. Fernandez-Ruiz, K. Mizuseki, A. Berenyi, C. A. Anastassiou, C. Koch, G. Buzsaki, Neuron 2014, 84, 470.
dc.identifier.citedreferenceY. Senzai, G. Buzsaki, Neuron 2017, 93, 691.
dc.identifier.citedreferenceA. Sirota, S. Montgomery, S. Fujisawa, Y. Isomura, M. Zugaro, G. Buzsaki, Neuron 2008, 60, 683.
dc.identifier.citedreferenceE. Stark, R. Eichler, L. Roux, S. Fujisawa, H. G. Rotstein, G. Buzsaki, Neuron 2013, 80, 1263.
dc.identifier.citedreferenceK. Kim, M. Voroslakos, J. P. Seymour, K. D. Wise, G. Buzsaki, E. Yoon, Nat. Commun. 2020, 11, 2063.
dc.identifier.citedreferenceJ. Abbott, T. Ye, K. Krenek, R. S. Gertner, S. Ban, Y. Kim, L. Qin, W. Wu, H. Park, D. Ham, Nat. Biomed. Eng. 2020, 4, 232.
dc.identifier.citedreferenceD. Ham, H. Park, S. Hwang, K. Kim, Nat. Electron. 2021, 4, 635.
dc.identifier.citedreferenceA. Berenyi, Z. Somogyvari, A. J. Nagy, L. Roux, J. D. Long, S. Fujisawa, E. Stark, A. Leonardo, T. D. Harris, G. Buzsaki, J. Neurophysiol. 2014, 111, 1132.
dc.identifier.citedreferenceG. Buzsaki, E. Stark, A. Berenyi, D. Khodagholy, D. R. Kipke, E. Yoon, K. D. Wise, Neuron 2015, 86, 92.
dc.identifier.citedreferenceJ. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman, M. Bauza, B. Barbarits, A. K. Lee, C. A. Anastassiou, A. Andrei, C. Aydin, M. Barbic, T. J. Blanche, V. Bonin, J. Couto, B. Dutta, S. L. Gratiy, D. A. Gutnisky, M. Hausser, B. Karsh, P. Ledochowitsch, C. M. Lopez, C. Mitelut, S. Musa, M. Okun, M. Pachitariu, J. Putzeys, P. D. Rich, C. Rossant, W. L. Sun, K. Svoboda, et al., Nature 2017, 551, 232.
dc.identifier.citedreferenceD. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, G. Buzsáki, Nat. Neurosci. 2015, 18, 310.
dc.identifier.citedreferenceN. A. Steinmetz, C. Aydin, A. Lebedeva, M. Okun, M. Pachitariu, M. Bauza, M. Beau, J. Bhagat, C. Bohm, M. Broux, S. Chen, J. Colonell, R. J. Gardner, B. Karsh, F. Kloosterman, D. Kostadinov, C. Mora-Lopez, J. O’Callaghan, J. Park, J. Putzeys, B. Sauerbrei, R. J. J. van Daal, A. Z. Vollan, S. Wang, M. Welkenhuysen, Z. Ye, J. T. Dudman, B. Dutta, A. W. Hantman, K. D. Harris, et al., Science 2021, 372, eabf4588.
dc.identifier.citedreferenceY. Hontani, F. Xia, C. Xu, Sci. Adv. 2021, 7, eabf3531.
dc.identifier.citedreferenceN. J. Sofroniew, D. Flickinger, J. King, K. Svoboda, eLife 2016, 5, e14472.
dc.identifier.citedreferenceT. Zhang, O. Hernandez, R. Chrapkiewicz, A. Shai, M. J. Wagner, Y. Zhang, C. H. Wu, J. Z. Li, M. Inoue, Y. Gong, B. Ahanonu, H. Zeng, H. Bito, M. J. Schnitzer, Nat. Methods 2019, 16, 1119.
dc.identifier.citedreferenceA. Fernandez-Ruiz, A. Oliva, M. Soula, F. Rocha-Almeida, G. A. Nagy, G. Martin-Vazquez, G. Buzsaki, Science 2021, 372, eabf3119.
dc.identifier.citedreferenceC. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy, M. Carandini, K. D. Harris, Science 2019, 364, 255.
dc.identifier.citedreferenceE. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Nat. Neurosci. 2005, 8, 1263.
dc.identifier.citedreferenceK. Deisseroth, Nat. Methods 2011, 8, 26.
dc.identifier.citedreferenceG. Li, F. Wang, W. Yang, W. Wang, G. Li, Y. Wang, L. Liu, Adv. Biosyst. 2019, 3, 1800319.
dc.identifier.citedreferenceG. Li, J. Yang, Y. Wang, W. Wang, L. Liu, Nanoscale 2018, 10, 21046.
dc.identifier.citedreferenceW. Liang, Y. Zhao, L. Liu, Y. Wang, W. J. Li, G.-B. Lee, Biophys. J. 2017, 113, 1531.
dc.identifier.citedreferenceG. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13940.
dc.identifier.citedreferenceJ. Yang, G. Li, W. Wang, J. Shi, M. Li, N. Xi, M. Zhang, L. Liu, Biosens. Bioelectron. 2021, 178, 113050.
dc.identifier.citedreferenceP. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, K. Deisseroth, Nat. Neurosci. 2012, 15, 163.
dc.identifier.citedreferenceA. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Nat. Biotechnol. 2015, 33, 277.
dc.identifier.citedreferenceK. Kampasi, D. F. English, J. Seymour, E. Stark, S. McKenzie, M. Voroslakos, G. Buzsaki, K. D. Wise, E. Yoon, Microsyst. Nanoeng. 2018, 4, 10.
dc.identifier.citedreferenceV. Lanzio, G. Telian, A. Koshelev, P. Micheletti, G. Presti, E. D’Arpa, P. De Martino, M. Lorenzon, P. Denes, M. West, S. Sassolini, S. Dhuey, H. Adesnik, S. Cabrini, Microsyst. Nanoeng. 2021, 7, 40.
dc.identifier.citedreferenceS. Libbrecht, L. Hoffman, M. Welkenhuysen, C. Van den Haute, V. Baekelandt, D. Braeken, S. Haesler, J. Neurophysiol. 2018, 120, 149.
dc.identifier.citedreferenceS. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzsaki, J. C. Magee, Eur. J. Neurosci. 2010, 31, 2279.
dc.identifier.citedreferenceE. Stark, T. Koos, G. Buzsaki, J. Neurophysiol. 2012, 108, 349.
dc.identifier.citedreferenceF. Wu, E. Stark, P.-C. Ku, K. D. Wise, G. Buzsaki, E. Yoon, Neuron 2015, 88, 1136.
dc.identifier.citedreferenceL. Carrillo-Reid, S. Han, W. Yang, A. Akrouh, R. Yuste, Cell 2019, 178, 447.
dc.identifier.citedreferenceJ. H. Marshel, Y. S. Kim, T. A. Machado, S. Quirin, B. Benson, J. Kadmon, C. Raja, A. Chibukhchyan, C. Ramakrishnan, M. Inoue, J. C. Shane, D. J. McKnight, S. Yoshizawa, H. E. Kato, S. Ganguli, K. Deisseroth, Science 2019, 365, eaaw5202.
dc.identifier.citedreferenceA. M. Packer, L. E. Russell, H. W. Dalgleish, M. Hausser, Nat. Methods 2015, 12, 140.
dc.identifier.citedreferenceJ. P. Rickgauer, K. Deisseroth, D. W. Tank, Nat. Neurosci. 2014, 17, 1816.
dc.identifier.citedreferenceN. T. M. Robinson, L. A. L. Descamps, L. E. Russell, M. O. Buchholz, B. A. Bicknell, G. K. Antonov, J. Y. N. Lau, R. Nutbrown, C. Schmidt-Hieber, M. Hausser, Cell 2020, 183, 1586.
dc.identifier.citedreferenceJ. Csicsvari, D. A. Henze, B. Jamieson, K. D. Harris, A. Sirota, P. Barthó, K. D. Wise, G. Buzsáki, J. Neurophysiol. 2003, 90, 1314.
dc.identifier.citedreferenceD. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, G. Buzsáki, J. Neurophysiol. 2000, 84, 390.
dc.identifier.citedreferenceJ. J. B. Jack, D. Noble, R. W. Tsien, Electric Current Flow in Excitable Cells, Clarendon Press, Oxford 1975.
dc.identifier.citedreferenceM. Pachitariu, N. Steinmetz, S. Kadir, M. Carandini, K. D. Harris, bioRxiv 2016, 061481, https://doi.org/10.1101/061481.
dc.identifier.citedreferenceC. X. Chen, R. J. Hurditch, D. W. Johnson, D. J. Nawrocki in SPIE’s 27th Annual Int. Symp. on Microlithography, SPIE, Santa Clara, CA 2002.
dc.identifier.citedreferenceM. P. de Grandpre, D. A. Vidusek, M. W. Legenza, in 1985 Microlithography Conf., SPIE, Santa Clara, CA 1985.
dc.identifier.citedreferenceS. Geary, J. Thompson, E. S. Capsuto, in SPIE’s 27th Annual Int. Symp. on Microlithography, SPIE, Santa Clara, CA 2002.
dc.identifier.citedreferenceJ. R. Black, in 20th Int. Reliability Physics Symp., IEEE, San Diego, CA 1982.
dc.identifier.citedreferenceJ. P. Neto, P. Baiao, G. Lopes, J. Frazao, J. Nogueira, E. Fortunato, P. Barquinha, A. R. Kampff, Front. Neurosci. 2018, 12, 715.
dc.identifier.citedreferenceD. F. English, S. McKenzie, T. Evans, K. Kim, E. Yoon, G. Buzsaki, Neuron 2017, 96, 505.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.