Show simple item record

Open-sleeve templates for computer-assisted implant surgery at healed or extraction sockets: An in vitro comparison to closed-sleeve guided system and free-hand approach

dc.contributor.authorLi, Junying
dc.contributor.authorMeneghetti, Priscila Ceolin
dc.contributor.authorGalli, Matthew
dc.contributor.authorMendonca, Gustavo
dc.contributor.authorChen, Zhaozhao
dc.contributor.authorWang, Hom-Lay
dc.date.accessioned2022-07-05T21:00:02Z
dc.date.available2023-08-05 17:00:00en
dc.date.available2022-07-05T21:00:02Z
dc.date.issued2022-07
dc.identifier.citationLi, Junying; Meneghetti, Priscila Ceolin; Galli, Matthew; Mendonca, Gustavo; Chen, Zhaozhao; Wang, Hom-Lay (2022). "Open- sleeve templates for computer- assisted implant surgery at healed or extraction sockets: An in vitro comparison to closed- sleeve guided system and free- hand approach." Clinical Oral Implants Research (7): 757-767.
dc.identifier.issn0905-7161
dc.identifier.issn1600-0501
dc.identifier.urihttps://hdl.handle.net/2027.42/172937
dc.description.abstractObjectiveA buccal opening guide provides better view and better irrigation. The aim of this study was to investigate the accuracy of this open-sleeve system.Material and MethodsThirty duplicated maxillary models, each with six extraction sockets and four healed sites, were used. Based on the same digital plan, three modalities, sCAIS with open-sleeves, closed-sleeves, and free-hand approach, were used to place implants. The global, horizontal, depth, and angular deviations between the virtual and actual implant positions were measured.ResultsBoth sCAIS groups exhibited better accuracy than the free-hand group in two clinical scenarios. At healed sites, the closed-sleeve group showed a significantly fewer error than the open-sleeve group in global apical (0.68 ± 0.33 vs. 0.96 ± 0.49 mm), horizontal coronal (0.28 ± 0.15 vs. 0.44 ± 0.25 mm), horizontal apical (0.64 ± 0.32 vs. 0.94 ± 0.48 mm), and angular deviations (1.83 ± 0.95 vs. 2.86 ± 1.46°). For extraction sockets, the open-sleeve group exhibited fewer deviations than the closed-sleeve group in terms of global (coronal: 0.77 ± 0.29 vs. 0.91 ± 0.22 mm; apical: 1.08 ± 0.49 vs. 1.37 ± 0.52 mm) and horizontal (coronal: 0.60 ± 0.24 vs. 0.86 ± 0.20 mm; apical: 0.95 ± 0.50 vs. 1.32 ± 0.51 mm) deviations. However, the closed-sleeve group was more accurate in the depth control (0.26 ± 0.20 vs. 0.40 ± 0.31 mm).ConclusionIn this in vitro investigation, open-sleeve sCAIS proved better accuracy than free-hand surgery for both delayed and immediate implant placement. Compared with a closed-sleeve sCAIS system, open sleeve have the potential of providing better outcomes in extraction sockets but not in healed sites.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstereolithography
dc.subject.otherdental implants
dc.subject.othercomputer-assisted implant dentistry
dc.subject.otherimmediate implant placement
dc.titleOpen-sleeve templates for computer-assisted implant surgery at healed or extraction sockets: An in vitro comparison to closed-sleeve guided system and free-hand approach
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172937/1/clr13957_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172937/2/clr13957.pdf
dc.identifier.doi10.1111/clr.13957
dc.identifier.sourceClinical Oral Implants Research
dc.identifier.citedreferenceLi, J., Chen, Z., Chan, H.-L., Sinjab, K., Yu, H., & Wang, H.-L. ( 2019 ). Does flap opening or not influence the accuracy of semi-guided implant placement in partially edentulous sites? Clinical Implant Dentistry and Related Research, 21, 1253 – 1261. https://doi.org/10.1111/cid.12847
dc.identifier.citedreferenceKholy, K., Ebenezer, S., Wittneben, J.-G., Lazarin, R., Rousson, D., & Buser, D. ( 2019a ). Influence of implant macrodesign and insertion connection technology on the accuracy of static computer-assisted implant surgery. Clinical Implant Dentistry and Related Research, 21, 1073 – 1079. https://doi.org/10.1111/cid.12836
dc.identifier.citedreferenceKühl, S., Payer, M., Zitzmann, N. U., Lambrecht, J. T., & Filippi, A. ( 2015 ). Technical accuracy of printed surgical templates for guided implant surgery with the co Diagnosti X TM software. Clinical Implant Dentistry and Related Research, 17, e177 – e182.
dc.identifier.citedreferenceArısan, V., Karabuda, C. Z., & Özdemir, T. ( 2010 ). Implant surgery using bone-and mucosa-supported stereolithographic guides in totally edentulous jaws: Surgical and post-operative outcomes of computer-aided vs. Standard techniques. Clinical Oral Implants Research, 21, 980 – 988.
dc.identifier.citedreferenceBencharit, S., Staffen, A., Yeung, M., Whitley, D., 3rd, Laskin, D. M., & Deeb, G. R. ( 2018 ). In vivo tooth-supported implant surgical guides fabricated with desktop stereolithographic printers: Fully guided surgery is more accurate than partially guided surgery. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 76, 1431 – 1439. https://doi.org/10.1016/j.joms.2018.02.010
dc.identifier.citedreferenceCassetta, M., Di Mambro, A., Giansanti, M., Stefanelli, L., & Cavallini, C. ( 2013 ). The intrinsic error of a stereolithographic surgical template in implant guided surgery. International Journal of Oral and Maxillofacial Surgery, 42, 264 – 275.
dc.identifier.citedreferenceChen, Z., Li, J., Lin, C., & Wang, H. ( 2020 ). Trend of scientific production on digital implant dentistry (1990-2019): A bibliometric study. Stoma Edu J, 7, 123 – 130.
dc.identifier.citedreferenceChen, Z., Li, J., Sinjab, K., Mendonca, G., Yu, H., & Wang, H.-L. ( 2018 ). Accuracy of flapless immediate implant placement in anterior maxilla using computer-assisted versus freehand surgery: A cadaver study. Clinical Oral Implants Research, 29, 1186 – 1194. https://doi.org/10.1111/clr.13382
dc.identifier.citedreferenceCristache, C. M., & Gurbanescu, S. ( 2017 ). Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol. International Journal of Dentistry, 2017, 4292081. https://doi.org/10.1155/2017/4292081
dc.identifier.citedreferenceCushen, S. E., & Turkyilmaz, I. ( 2013 ). Impact of operator experience on the accuracy of implant placement with stereolithographic surgical templates: An in vitro study. The Journal of Prosthetic Dentistry, 109, 248 – 254.
dc.identifier.citedreferenceDeeb, G. R., Allen, R. K., Hall, V. P., Whitley, D., 3rd, Laskin, D. M., & Bencharit, S. ( 2017 ). How accurate are implant surgical guides produced with desktop stereolithographic. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 75, 2559.e1 – 2559.e8. https://doi.org/10.1016/j.joms.2017.08.001
dc.identifier.citedreferenceErsoy, A. E., Turkyilmaz, I., Ozan, O., & McGlumphy, E. A. ( 2008 ). Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: Clinical data from 94 implants. Journal of Periodontology, 79, 1339 – 1345. https://doi.org/10.1902/jop.2008.080059
dc.identifier.citedreferenceFrösch, L., Mukaddam, K., Filippi, A., Zitzmann, N. U., & Kühl, S. ( 2019 ). Comparison of heat generation between guided and conventional implant surgery for single and sequential drilling protocols-an in vitro study. Clinical Oral Implants Research, 30, 121 – 130. https://doi.org/10.1111/clr.13398
dc.identifier.citedreferenceJoda, T., Derksen, W., Wittneben, J. G., & Kuehl, S. ( 2018 ). Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: A systematic review. Clinical Oral Implants Research, 29 ( Suppl. 16 ), 359 – 373. https://doi.org/10.1111/clr.13136
dc.identifier.citedreferenceKholy, K. E., Janner, S. F. M., Schimmel, M., & Buser, D. ( 2019b ). The influence of guided sleeve height, drilling distance, and drilling key length on the accuracy of static computer-assisted implant surgery. Clinical Implant Dentistry and Related Research, 21, 101 – 107. https://doi.org/10.1111/cid.12705
dc.identifier.citedreferenceLewis, R. C., Harris, B. T., Sarno, R., Morton, D., Llop, D. R., & Lin, W.-S. ( 2015 ). Maxillary and mandibular immediately loaded implant-supported interim complete fixed dental prostheses on immediately placed dental implants with a digital approach: A clinical report. The Journal of Prosthetic Dentistry, 114, 315 – 322. https://doi.org/10.1016/j.prosdent.2015.03.021
dc.identifier.citedreferenceLi, J., Chen, Z., Dong, B., Wang, H. L., Joda, T., & Yu, H. ( 2020 ). Registering maxillomandibular relation to create a virtual patient integrated with a virtual articulator for complex implant rehabilitation: A clinical report. Journal of Prosthodontics, 29, 553 – 557. https://doi.org/10.1111/jopr.13204
dc.identifier.citedreferenceLin, H. H., Chiang, W. C., Lo, L. J., Sheng-Pin Hsu, S., Wang, C. H., & Wan, S. Y. ( 2013 ). Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 71, 1933 – 1947. https://doi.org/10.1016/j.joms.2013.06.199
dc.identifier.citedreferenceMalo, P., de Araujo Nobre, M., & Lopes, A. ( 2007 ). The use of computer-guided flapless implant surgery and four implants placed in immediate function to support a fixed denture: Preliminary results after a mean follow-up period of thirteen months. The Journal of Prosthetic Dentistry, 97, S26 – S34.
dc.identifier.citedreferenceMoon, S. Y., Lee, K. R., Kim, S. G., & Son, M. K. ( 2016 ). Clinical problems of computer-guided implant surgery. Maxillofacial Plastic and Reconstructive Surgery, 38, 1 – 6. https://doi.org/10.1186/s40902-016-0063-3
dc.identifier.citedreferenceMuallah, J., Wesemann, C., Nowak, R., Robben, J., Mah, J., Pospiech, P., & Bumann, A. ( 2017 ). Accuracy of full-arch scans using intraoral and extraoral scanners: An in vitro study using a new method of evaluation. International Journal of Computerized Dentistry, 20, 151 – 164.
dc.identifier.citedreferenceRaico Gallardo, Y. N., da Silva-Olivio, I. R. T., Mukai, E., Morimoto, S., Sesma, N., & Cordaro, L. ( 2017 ). Accuracy comparison of guided surgery for dental implants according to the tissue of support: A systematic review and meta-analysis. Clinical Oral Implants Research, 28, 602 – 612. https://doi.org/10.1111/clr.12841
dc.identifier.citedreferenceSiqueira, R., Chen, Z., Galli, M., Saleh, I., Wang, H.-L., & Chan, H.-L. ( 2020 ). Does a fully digital workflow improve the accuracy of computer-assisted implant surgery in partially edentulous patients? A systematic review of clinical trials. Clinical Implant Dentistry and Related Research, 22, 660 – 671. https://doi.org/10.1111/cid.12937
dc.identifier.citedreferenceTallarico, M., Kim, Y.-J., Cocchi, F., Martinolli, M., & Meloni, S. M. ( 2019 ). Accuracy of newly developed sleeve-designed templates for insertion of dental implants: A prospective multicenters clinical trial. Clinical Implant Dentistry and Related Research, 21, 108 – 113. https://doi.org/10.1111/cid.12704
dc.identifier.citedreferenceTerzioğlu, H., Akkaya, M., & Ozan, O. ( 2009 ). The use of a computerized tomography-based software program with a flapless surgical technique in implant dentistry: A case report. The International Journal of Oral & Maxillofacial Implants, 24, 137 – 142.
dc.identifier.citedreferenceKholy, K. E., Lazarin, R., Janner, S. F. M., Faerber, K., Buser, R., & Buser, D. ( 2019c ). Influence of surgical guide support and implant site location on accuracy of static computer-assisted implant surgery. Clinical Oral Implants Research, 30, 1067 – 1075. https://doi.org/10.1111/clr.13520
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.