Regulation of the gonadotropin-releasing hormone neuron during stress
dc.contributor.author | McCosh, Richard B. | |
dc.contributor.author | O’Bryne, Kevin T. | |
dc.contributor.author | Karsch, Fred J. | |
dc.contributor.author | Breen, Kellie M. | |
dc.date.accessioned | 2022-07-05T21:00:33Z | |
dc.date.available | 2023-06-05 17:00:32 | en |
dc.date.available | 2022-07-05T21:00:33Z | |
dc.date.issued | 2022-05 | |
dc.identifier.citation | McCosh, Richard B.; O’Bryne, Kevin T.; Karsch, Fred J.; Breen, Kellie M. (2022). "Regulation of the gonadotropin-releasing hormone neuron during stress." Journal of Neuroendocrinology (5): n/a-n/a. | |
dc.identifier.issn | 0953-8194 | |
dc.identifier.issn | 1365-2826 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/172953 | |
dc.description.abstract | The effect of stress on reproduction and gonadal function has captivated investigators for almost 100 years. Following the identification of gonadotropin-releasing hormone (GnRH) 50 years ago, a niche research field emerged fixated on how stress impairs this central node controlling downstream pituitary and gonadal function. It is now clear that both episodic GnRH secretion in males and females and surge GnRH secretion in females are inhibited during a variety of stress types. There has been considerable advancement in our understanding of numerous stress-related signaling molecules and their ability to impair reproductive neuroendocrine activity during stress. Recently, much attention has turned to the effects of stress on two populations of kisspeptin neurons: the stimulatory afferents to GnRH neurons that regulate pulsatile and surge-type gonadotropin secretion. Indeed, future work is still required to fully construct the neuroanatomical framework underlying stress effects, directly or indirectly, on GnRH neuron function. The present review evaluates and synthesizes evidence related to stress-related signaling molecules acting directly on GnRH neurons. Here, we review the evidence for and against the action of a handful of signaling molecules as inhibitors of GnRH neuron function, including corticotropin-releasing hormone, urocortins, norepinephrine, cortisol/corticosterone, calcitonin gene-related peptide and arginine-phenylalanine-amide-related peptide-3.The gonadotropin-releasing hormone (GnRH) neuron is central to the orchestration of reproductive biology inmalesandfemales and a node of inhibition inresponsetostress.This review evaluates the evidence for and against the action of a handful of stress-induced signaling molecules as inhibitors of GnRH neuron function, including corticotropin-releasing hormone, urocortins, norepinephrine, cortisol/corticosterone, calcitonin gene-related peptide, and arginine-phenylalanine-amide-related peptide-3. | |
dc.publisher | Elsevier | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | urocortins | |
dc.subject.other | norepinephrine | |
dc.subject.other | CGRP | |
dc.subject.other | corticosterone | |
dc.subject.other | cortisol | |
dc.subject.other | CRH | |
dc.subject.other | GnRH | |
dc.subject.other | LH | |
dc.subject.other | RFRP-3 | |
dc.subject.other | stress | |
dc.title | Regulation of the gonadotropin-releasing hormone neuron during stress | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/172953/1/jne13098.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/172953/2/jne13098_am.pdf | |
dc.identifier.doi | 10.1111/jne.13098 | |
dc.identifier.source | Journal of Neuroendocrinology | |
dc.identifier.citedreference | Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci. 2014; 39 ( 11 ): 1903 - 1911. | |
dc.identifier.citedreference | Oakley AE, Breen KM, Clarke IJ, Karsch FJ, Wagenmaker ER, Tilbrook AJ. Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: influence of ovarian steroids. Endocrinology. 2009; 150 ( 1 ): 341 - 349. | |
dc.identifier.citedreference | Oakley AE, Breen KM, Tilbrook AJ, Wagenmaker ER, Karsch FJ. Role of estradiol in cortisol-induced reduction of luteinizing hormone pulse frequency. Endocrinology. 2009; 150 ( 6 ): 2775 - 2782. | |
dc.identifier.citedreference | Kreisman M, McCosh R, Tian K, Song C, Breen K. Estradiol enables chronic corticosterone to inhibit pulsatile LH secretion and suppress Kiss1 neuronal activation in female mice. Neuroendocrinology. 2019; 110 ( 6 ): 501 - 516. | |
dc.identifier.citedreference | Debus N, Breen KM, Barrell GK, et al. Does cortisol mediate endotoxin-induced inhibition of pulsatile luteinizing hormone and gonadotropin-releasing hormone secretion? Endocrinology. 2002; 143 ( 10 ): 3748 - 3758. | |
dc.identifier.citedreference | Breen KM, Karsch FJ. Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Endocrinology. 2004; 145 ( 2 ): 692 - 698. | |
dc.identifier.citedreference | Breen KM, Billings HJ, Wagenmaker ER, Wessinger EW, Karsch FJ. Endocrine basis for disruptive effects of cortisol on preovulatory events. Endocrinology. 2005; 146 ( 4 ): 2107 - 2115. | |
dc.identifier.citedreference | Luo E, Stephens SB, Chaing S, Munaganuru N, Kauffman AS, Breen KM. Corticosterone blocks ovarian cyclicity and the LH surge via decreased kisspeptin neuron activation in female mice. Endocrinology. 2016; 157 ( 3 ): 1187 - 1199. | |
dc.identifier.citedreference | Wagenmaker ER, Breen KM, Oakley AE, et al. Cortisol interferes with the estradiol-induced surge of luteinizing hormone in the ewe. Biol Reprod. 2009; 80 ( 3 ): 458 - 463. | |
dc.identifier.citedreference | Oakley AE. Central inhibitory actions of glucocorticoids on reproductive function: permissive role of estradiol. Molecular and Integrative Physiology, University of Michagan; 2008. | |
dc.identifier.citedreference | Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal androgen exposure alters KNDy neurons and their afferent network in a model of polycystic ovarian syndrome. Endocrinology. 2021; 162 ( 11 ): bqab158. | |
dc.identifier.citedreference | Rizwan MZ, Poling MC, Corr M, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology. 2012; 153 ( 8 ): 3770 - 3779. | |
dc.identifier.citedreference | Findeisen M, Rathmann D, Beck-Sickinger AG. Structure-activity studies of RFamide peptides reveal subtype-selective activation of neuropeptide FF1 and FF2 receptors. ChemMedChem. 2011; 6 ( 6 ): 1081 - 1093. | |
dc.identifier.citedreference | Angelopoulou E, Quignon C, Kriegsfeld LJ, Simonneaux V. Functional implications of RFRP-3 in the central control of daily and seasonal rhythms in reproduction. Front Endocrinol (Lausanne). 2019; 10: 183. | |
dc.identifier.citedreference | León S, García-Galiano D, Ruiz-Pino F, et al. Physiological roles of gonadotropin-inhibitory hormone signaling in the control of mammalian reproductive axis: studies in the NPFF1 receptor null mouse. Endocrinology. 2014; 155 ( 8 ): 2953 - 2965. | |
dc.identifier.citedreference | Geraghty AC, Muroy SE, Zhao S, Bentley GE, Kriegsfeld LJ, Kaufer D. Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption. Elife. 2015; 12 ( 4 ): e04316. | |
dc.identifier.citedreference | Mamgain A, Sawyer IL, Timajo DAM, et al. RFamide-related peptide neurons modulate reproductive function and stress responses. J Neurosci. 2021; 41 ( 3 ): 474 - 488. | |
dc.identifier.citedreference | Poling MC, Kim J, Dhamija S, Kauffman AS. Development, sex steroid regulation, and phenotypic characterization of RFamide-related peptide (Rfrp) gene expression and RFamide receptors in the mouse hypothalamus. Endocrinology. 2012; 153 ( 4 ): 1827 - 1840. | |
dc.identifier.citedreference | Ubuka T, Inoue K, Fukuda Y, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology. 2012; 153 ( 1 ): 373 - 385. | |
dc.identifier.citedreference | Ubuka T, Lai H, Kitani M, et al. Gonadotropin-inhibitory hormone identification, cDNA cloning, and distribution in rhesus macaque brain. J Comp Neurol. 2009; 517 ( 6 ): 841 - 855. | |
dc.identifier.citedreference | Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. 2009; 150 ( 6 ): 2799 - 2804. | |
dc.identifier.citedreference | Constantin S, Pizano K, Matson K, Shan Y, Reynolds D, Wray S. An inhibitory circuit from brainstem to GnRH neurons in male mice: a new role for the RFRP receptor. Endocrinology. 2021; 162 ( 5 ): bqab030. | |
dc.identifier.citedreference | Lehman MN, Merkley CM, Coolen LM, Goodman RL. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010; 1364: 90 - 102. | |
dc.identifier.citedreference | McQuillan HJ, Han SY, Cheong I, Herbison AE. GnRH pulse generator activity across the estrous cycle of female mice. Endocrinology. 2019; 160 ( 6 ): 1480 - 1491. | |
dc.identifier.citedreference | Czieselsky K, Prescott M, Porteous R, et al. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology. 2016; 157 ( 12 ): 4794 - 4802. | |
dc.identifier.citedreference | Nagatani S, Tsukamura H, Maeda K. Estrogen feedback needed at the paraventricular nucleus or A2 to suppress pulsatile luteinizing hormone release in fasting female rats. Endocrinology. 1994; 135 ( 3 ): 870 - 875. | |
dc.identifier.citedreference | Everett JW, Sawyer CH, Markee JE. A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology. 1949; 44 ( 3 ): 234 - 250. | |
dc.identifier.citedreference | Drouva SV, Laplante E, Kordon C. alpha 1-adrenergic receptor involvement in the LH surge in ovariectomized estrogen-primed rats. Eur J Pharmacol. 1982; 81 ( 2 ): 341 - 344. | |
dc.identifier.citedreference | Clarke IJ, Scott CJ, Pereira A, Pompolo S. The role of noradrenaline in the generation of the preovulatory LH surge in the ewe. Domest Anim Endocrinol. 2006; 30 ( 4 ): 260 - 275. | |
dc.identifier.citedreference | Romanov RA, Alpár A, Hökfelt T, Harkany T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J Endocrinol. 2017; 232 ( 3 ): 161 - 172. | |
dc.identifier.citedreference | Kreisman MJ, Tadrousse KS, McCosh RB, Breen KM. Neuroendocrine basis for disrupted ovarian cyclicity in female mice during chronic undernutrition. Endocrinology. 2021; 162 ( 8 ): 1 - 17. | |
dc.identifier.citedreference | Cameron JL, Nosbisch C. Suppression of pulsatile luteinizing hormone and testosterone secretion during short term food restriction in the adult male rhesus monkey (Macaca mulatta). Endocrinology. 1991; 128 ( 3 ): 1532 - 1540. | |
dc.identifier.citedreference | Merkley CM, Renwick AN, Shuping SL, Harlow K, Sommer JR, Nestor CC. Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep. Reprod Fertil. 2020; 1 ( 1 ): 21 - 33. | |
dc.identifier.citedreference | Goodman RL. Neuroendocrine control of gonadotropin secretion: comparative aspects. In: Plant TM, Zeleznik AJ, eds. Knobil and Neill’s Physiology or Reproduction ( 4 th edn, vol 2 ). Elsevier; 2015: 1537 - 1563. | |
dc.identifier.citedreference | Podfigurna-Stopa A, Pludowski P, Jaworski M, Lorenc R, Genazzani AR, Meczekalski B. Skeletal status and body composition in young women with functional hypothalamic amenorrhea. Gynecol Endocrinol. 2012; 28 ( 4 ): 299 - 304. | |
dc.identifier.citedreference | Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, Hirschberg AL. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005; 90 ( 3 ): 1354 - 1359. | |
dc.identifier.citedreference | Friday KE, Drinkwater BL, Bruemmer B, Chesnut C 3rd, Chait A. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake. J Clin Endocrinol Metab. 1993; 77 ( 6 ): 1605 - 1609. | |
dc.identifier.citedreference | Marcus MD, Loucks TL, Berga SL. Psychological correlates of functional hypothalamic amenorrhea. Fertil Steril. 2001; 76 ( 2 ): 310 - 316. | |
dc.identifier.citedreference | Moenter SM. Leap of faith: does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity? Neuroendocrinology. 2015; 102 ( 4 ): 256 - 266. | |
dc.identifier.citedreference | Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E. Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology. 1970; 87 ( 5 ): 850 - 853. | |
dc.identifier.citedreference | Tilbrook AJ, Canny BJ, Serapiglia MD, Ambrose TJ, Clarke IJ. Suppression of the secretion of luteinizing hormone due to isolation/restraint stress in gonadectomised rams and ewes is influenced by sex steroids. J Endocrinol. 1999; 160 ( 3 ): 469 - 481. | |
dc.identifier.citedreference | Li XF, Edward J, Mitchell JC, et al. Differential effects of repeated restraint stress on pulsatile lutenizing hormone secretion in female fischer, lewis and wistar rats. J Neuroendocrinol. 2004; 16 ( 7 ): 620 - 627. | |
dc.identifier.citedreference | Yang JA, Hughes JK, Parra RA, Volk KM, Kauffman AS. Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP-3 neurons in male mice. J Endocrinol. 2018; 239 ( 3 ): 339 - 350. | |
dc.identifier.citedreference | Yang JA, Song CI, Hughes JK, et al. Acute psychosocial stress inhibits LH pulsatility and kiss1 neuronal activation in female mice. Endocrinology. 2017; 158 ( 11 ): 3716 - 3723. | |
dc.identifier.citedreference | McCosh RB, Kreisman MJ, Tian K, Ho BS, Thackray VG, Breen KM. Insulin-induced hypoglycaemia suppresses pulsatile luteinising hormone secretion and arcuate Kiss1 cell activation in female mice. J Neuroendocrinol. 2019; 31 ( 12 ): e12813. | |
dc.identifier.citedreference | Chen MD, O’Byrne KT, Chiappini SE, Hotchkiss J, Knobil E. Hypoglycemic ‘stress’ and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: role of the ovary. Neuroendocrinology. 1992; 56 ( 5 ): 666 - 673. | |
dc.identifier.citedreference | Clarke IJ, Horton RJ, Doughton BW. Investigation of the mechanism by which insulin-induced hypoglycemia decreases luteinizing hormone secretion in ovariectomized ewes. Endocrinology. 1990; 127 ( 3 ): 1470 - 1476. | |
dc.identifier.citedreference | Oltmanns KM, Fruehwald-Schultes B, Kern W, Born J, Fehm HL, Peters A. Hypoglycemia, but not insulin, acutely decreases LH and T secretion in men. J Clin Endocrinol Metab. 2001; 86 ( 10 ): 4913 - 4919. | |
dc.identifier.citedreference | Goubillon ML, Thalabard JC. Insulin-induced hypoglycemia decreases luteinizing hormone secretion in the castrated male rat: involvement of opiate peptides. Neuroendocrinology. 1996; 64 ( 1 ): 49 - 56. | |
dc.identifier.citedreference | Ohkura S, Ichimaru T, Itoh F, Matsuyama S, Okamura H. Further evidence for the role of glucose as a metabolic regulator of hypothalamic gonadotropin-releasing hormone pulse generator activity in goats. Endocrinology. 2004; 145 ( 7 ): 3239 - 3246. | |
dc.identifier.citedreference | Bucholtz DC, Vidwans NM, Herbosa CG, Schillo KK, Foster DL. Metabolic interfaces between growth and reproduction. V. Pulsatile luteinizing hormone secretion is dependent on glucose availability. Endocrinology. 1996; 137 ( 2 ): 601 - 607. | |
dc.identifier.citedreference | Shahab M, Sajapitak S, Tsukamura H, et al. Acute lipoprivation suppresses pulsatile luteinizing hormone secretion without affecting food intake in female rats. J Reprod Dev. 2006; 52 ( 6 ): 763 - 772. | |
dc.identifier.citedreference | Battaglia DF, Bowen JM, Krasa HB, Thrun LA, Viguie C, Karsch FJ. Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood. Endocrinology. 1997; 138 ( 10 ): 4273 - 4281. | |
dc.identifier.citedreference | Takeuchi Y, Nagabukuro H, Kizumi O, Mori Y. Lipopolysaccharide-induced suppression of the hypothalamic gonadotropin-releasing hormone pulse generator in ovariectomized goats. J Vet Med Sci. 1997; 59 ( 2 ): 93 - 96. | |
dc.identifier.citedreference | Refojo D, Arias P, Moguilevsky JA, Feleder C. Effect of bacterial endotoxin on in vivo pulsatile gonadotropin secretion in adult male rats. Neuroendocrinology. 1998; 67 ( 4 ): 275 - 281. | |
dc.identifier.citedreference | Makowski KN, Kreisman MJ, McCosh RB, Raad AA, Breen KM. Peripheral interleukin-1β inhibits arcuate kiss1 cells and LH pulses in female mice. J Endocrinol. 2020; 246 ( 2 ): 149 - 160. | |
dc.identifier.citedreference | Kalra PS, Edwards TG, Xu B, Jain M, Kalra SP. The anti-gonadotropic effects of cytokines: the role of neuropeptides. Domest Anim Endocrinol. 1998; 15 ( 5 ): 321 - 332. | |
dc.identifier.citedreference | Dobson H, Tebble JE, Phogat JB, Smith RF. Effect of transport on pulsatile and surge secretion of LH in ewes in the breeding season. J Reprod Fertil. 1999; 116 ( 1 ): 1 - 8. | |
dc.identifier.citedreference | Battaglia DF, Beaver AB, Harris TG, Tanhehco E, Viguié C, Karsch FJ. Endotoxin disrupts the estradiol-induced luteinizing hormone surge: interference with estradiol signal reading, not surge release. Endocrinology. 1999; 140 ( 6 ): 2471 - 2479. | |
dc.identifier.citedreference | Fergani C, Saifullizam AK, Routly JE, Smith RF, Dobson H. Estrous behavior, luteinizing hormone and estradiol profiles of intact ewes treated with insulin or endotoxin. Physiol Behav. 2012; 105 ( 3 ): 757 - 765. | |
dc.identifier.citedreference | Breen KM, Billings HJ, Debus N, Karsch FJ. Endotoxin inhibits the surge secretion of gonadotropin-releasing hormone via a prostaglandin-independent pathway. Endocrinology. 2004; 145 ( 1 ): 221 - 227. | |
dc.identifier.citedreference | Rivier C, Vale W. Cytokines act within the brain to inhibit luteinizing hormone secretion and ovulation in the rat. Endocrinology. 1990; 127 ( 2 ): 849 - 856. | |
dc.identifier.citedreference | Kalra PS, Sahu A, Kalra SP. Interleukin-1 inhibits the ovarian steroid-induced luteinizing hormone surge and release of hypothalamic luteinizing hormone-releasing hormone in rats. Endocrinology. 1990; 126 ( 4 ): 2145 - 2152. | |
dc.identifier.citedreference | Fourman LT, Fazeli PK. Neuroendocrine causes of amenorrhea–an update. J Clin Endocrinol Metab. 2015; 100 ( 3 ): 812 - 824. | |
dc.identifier.citedreference | Bethea CL, Centeno ML, Cameron JL. Neurobiology of stress-induced reproductive dysfunction in female macaques. Mol Neurobiol. 2008; 38 ( 3 ): 199 - 230. | |
dc.identifier.citedreference | Breen KM, Thackray VG, Hsu T, Mak-McCully RA, Coss D, Mellon PL. Stress levels of glucocorticoids inhibit LHbeta-subunit gene expression in gonadotrope cells. Mol Endocrinol. 2012; 26 ( 10 ): 1716 - 1731. | |
dc.identifier.citedreference | Nair BB, Khant Aung Z, Porteous R, et al. Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. J Neuroendocrinol. 2021; 33 ( 5 ): e12972. | |
dc.identifier.citedreference | Wagenmaker ER, Moenter SM. Exposure to acute psychosocial stress disrupts the luteinizing hormone surge independent of estrous cycle alterations in female mice. Endocrinology. 2017; 158 ( 8 ): 2593 - 2602. | |
dc.identifier.citedreference | Goldman JM, Murr AS, Cooper RL. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol. 2007; 80 ( 2 ): 84 - 97. | |
dc.identifier.citedreference | Wang L, Vanacker C, Burger LL, et al. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. Elife. 2019; 8: e43999. | |
dc.identifier.citedreference | Wagenmaker ER, Breen KM, Oakley AE, Tilbrook AJ, Karsch FJ. The estrous cycle of the ewe is resistant to disruption by repeated, acute psychosocial stress. Biol Reprod. 2010; 82 ( 6 ): 1206 - 1215. | |
dc.identifier.citedreference | Williams CL, Nishihara M, Thalabard JC, Grosser PM, Hotchkiss J, Knobil E. Corticotropin-releasing factor and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey. Electrophysiological studies. Neuroendocrinology. 1990; 52 ( 2 ): 133 - 137. | |
dc.identifier.citedreference | Olster DH, Ferin M. Corticotropin-releasing hormone inhibits gonadotropin secretion in the ovariectomized rhesus monkey. J Clin Endocrinol Metab. 1987; 65 ( 2 ): 262 - 267. | |
dc.identifier.citedreference | Gindoff PR, Ferin M. Endogenous opioid peptides modulate the effect of corticotropin-releasing factor on gonadotropin release in the primate. Endocrinology. 1987; 121 ( 3 ): 837 - 842. | |
dc.identifier.citedreference | Ciechanowska M, Łapot M, Malewski T, Mateusiak K, Misztal T, Przekop F. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes. Reprod Fertil Dev. 2011; 23 ( 6 ): 780 - 787. | |
dc.identifier.citedreference | Caraty A, Miller DW, Delaleu B, Martin GB. Stimulation of LH secretion in sheep by central administration of corticotrophin-releasing hormone. J Reprod Fertil. 1997; 111 ( 2 ): 249 - 257. | |
dc.identifier.citedreference | Naylor AM, Porter DW, Lincoln DW. Central administration of corticotrophin-releasing factor in the sheep: effects on secretion of gonadotrophins, prolactin and cortisol. J Endocrinol. 1990; 124 ( 1 ): 117 - 125. | |
dc.identifier.citedreference | Moore AM, Coolen LM, Porter DT, Goodman RL, Lehman MN. KNDy cells revisited. Endocrinology. 2018; 159 ( 9 ): 3219 - 3234. | |
dc.identifier.citedreference | Tilbrook AJ, Canny BJ, Stewart BJ, Serapiglia MD, Clarke IJ. Central administration of corticotrophin releasing hormone but not arginine vasopressin stimulates the secretion of luteinizing hormone in rams in the presence and absence of testosterone. J Endocrinol. 1999; 162 ( 2 ): 301 - 311. | |
dc.identifier.citedreference | Rivier C, Vale W. Influence of corticotropin-releasing factor on reproductive functions in the rat. Endocrinology. 1984; 114 ( 3 ): 914 - 921. | |
dc.identifier.citedreference | Petraglia F, Sutton S, Vale W, Plotsky P. Corticotropin-releasing factor decreases plasma luteinizing hormone levels in female rats by inhibiting gonadotropin-releasing hormone release into hypophysial-portal circulation. Endocrinology. 1987; 120 ( 3 ): 1083 - 1088. | |
dc.identifier.citedreference | Yip SH, Liu X, Hessler S, Cheong I, Porteous R, Herbison AE. Indirect suppression of pulsatile LH secretion by CRH neurons in the female mouse. Endocrinology. 2021; 162 ( 3 ): bqaa237. | |
dc.identifier.citedreference | Shah NS, Pugh PC, Nam H, et al. A subset of presympathetic-premotor neurons within the centrally projecting Edinger-Westphal nucleus expresses urocortin-1. J Chem Neuroanat. 2013; 52: 25 - 35. | |
dc.identifier.citedreference | Morin SM, Ling N, Liu XJ, Kahl SD, Gehlert DR. Differential distribution of urocortin- and corticotropin-releasing factor-like immunoreactivities in the rat brain. Neuroscience. 1999; 92 ( 1 ): 281 - 291. | |
dc.identifier.citedreference | Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001; 98 ( 5 ): 2843 - 2848. | |
dc.identifier.citedreference | Li C, Vaughan J, Sawchenko PE, Vale WW. Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci. 2002; 22 ( 3 ): 991 - 1001. | |
dc.identifier.citedreference | Li XF, Bowe JE, Lightman SL, O’Byrne KT. Role of corticotropin-releasing factor receptor-2 in stress-induced suppression of pulsatile luteinizing hormone secretion in the rat. Endocrinology. 2005; 146 ( 1 ): 318 - 322. | |
dc.identifier.citedreference | Chen MD, Ordog T, O’Byrne KT, Goldsmith JR, Connaughton MA, Knobil E. The insulin hypoglycemia-induced inhibition of gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: roles of vasopressin and corticotropin-releasing factor. Endocrinology. 1996; 137 ( 5 ): 2012 - 2021. | |
dc.identifier.citedreference | Tsukahara S, Tsukamura H, Foster DL, Maeda KI. Effect of corticotropin-releasing hormone antagonist on oestrogen-dependent glucoprivic suppression of luteinizing hormone secretion in female rats. J Neuroendocrinol. 1999; 11 ( 2 ): 101 - 105. | |
dc.identifier.citedreference | Li XF, Bowe JE, Kinsey-Jones JS, Brain SD, Lightman SL, O’Byrne KT. Differential role of corticotrophin-releasing factor receptor types 1 and 2 in stress-induced suppression of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol. 2006; 18 ( 8 ): 602 - 610. | |
dc.identifier.citedreference | Herod SM, Pohl CR, Cameron JL. Treatment with a CRH-R1 antagonist prevents stress-induced suppression of the central neural drive to the reproductive axis in female macaques. Am J Physiol Endocrinol Metab. 2011; 300 ( 1 ): E19 - 27. | |
dc.identifier.citedreference | Jasoni CL, Todman MG, Han SK, Herbison AE. Expression of mRNAs encoding receptors that mediate stress signals in gonadotropin-releasing hormone neurons of the mouse. Neuroendocrinology. 2005; 82 ( 5–6 ): 320 - 328. | |
dc.identifier.citedreference | Dudás B, Merchenthaler I. Close juxtapositions between luteinizing hormone-releasing hormone-immunoreactive neurons and corticotropin-releasing factor-immunoreactive axons in the human diencephalon. J Clin Endocrinol Metab. 2002; 87 ( 12 ): 5778 - 5784. | |
dc.identifier.citedreference | MacLusky NJ, Naftolin F, Leranth C. Immunocytochemical evidence for direct synaptic connections between corticotrophin-releasing factor (CRF) and gonadotrophin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res. 1988; 439 ( 1–2 ): 391 - 395. | |
dc.identifier.citedreference | Tellam DJ, Perone MJ, Dunn IC, et al. Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line. NeuroReport. 1998; 9 ( 14 ): 3135 - 3140. | |
dc.identifier.citedreference | Hahn JD, Coen CW. Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. J Comp Neurol. 2006; 494 ( 1 ): 190 - 214. | |
dc.identifier.citedreference | Rivalland ET, Tilbrook AJ, Turner AI, Iqbal J, Pompolo S, Clarke IJ. Projections to the preoptic area from the paraventricular nucleus, arcuate nucleus and the bed nucleus of the stria terminalis are unlikely to be involved in stress-induced suppression of GnRH secretion in sheep. Neuroendocrinology. 2006; 84 ( 1 ): 1 - 13. | |
dc.identifier.citedreference | Phumsatitpong C, De Guzman RM, Zuloaga DG, Moenter SM. A CRH receptor type 1 agonist increases GABA transmission to GnRH neurons in a circulating-estradiol-dependent manner. Endocrinology. 2020; 161 ( 11 ): bqaa140. | |
dc.identifier.citedreference | Raftogianni A, Roth LC, García-González D, et al. Deciphering the contributions of CRH receptors in the brain and pituitary to stress-induced inhibition of the reproductive axis. Front Mol Neurosci. 2018; 11: 305. | |
dc.identifier.citedreference | Phumsatitpong C, Moenter SM. Estradiol-dependent stimulation and suppression of gonadotropin-releasing hormone neuron firing activity by corticotropin-releasing hormone in female mice. Endocrinology. 2018; 159 ( 1 ): 414 - 425. | |
dc.identifier.citedreference | Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci. 2014; 8: 387. | |
dc.identifier.citedreference | Wang L, Guo W, Shen X, et al. Different dendritic domains of the GnRH neuron underlie the pulse and surge modes of GnRH secretion in female mice. Elife. 2020; 9: e53945. | |
dc.identifier.citedreference | Takumi K, Iijima N, Higo S, Ozawa H. Immunohistochemical analysis of the colocalization of corticotropin-releasing hormone receptor and glucocorticoid receptor in kisspeptin neurons in the hypothalamus of female rats. Neurosci Lett. 2012; 531 ( 1 ): 40 - 45. | |
dc.identifier.citedreference | Kinsey-Jones JS, Li XF, Knox AM, et al. Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J Neuroendocrinol. 2009; 21 ( 1 ): 20 - 29. | |
dc.identifier.citedreference | Harno E, Cottrell EC, White A. Metabolic pitfalls of CNS Cre-based technology. Cell Metab. 2013; 18 ( 1 ): 21 - 28. | |
dc.identifier.citedreference | Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009; 89 ( 2 ): 535 - 606. | |
dc.identifier.citedreference | Plotsky PM. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology. 1987; 121 ( 3 ): 924 - 930. | |
dc.identifier.citedreference | Bienkowski MS, Rinaman L. Noradrenergic inputs to the paraventricular hypothalamus contribute to hypothalamic-pituitary-adrenal axis and central Fos activation in rats after acute systemic endotoxin exposure. Neuroscience. 2008; 156 ( 4 ): 1093 - 1102. | |
dc.identifier.citedreference | Poe GR, Foote S, Eschenko O, et al. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020; 21 ( 11 ): 644 - 659. | |
dc.identifier.citedreference | Rassnick S, Sved AF, Rabin BS. Locus coeruleus stimulation by corticotropin-releasing hormone suppresses in vitro cellular immune responses. J Neurosci. 1994; 14 ( 10 ): 6033 - 6040. | |
dc.identifier.citedreference | Butler PD, Weiss JM, Stout JC, Nemeroff CB. Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci. 1990; 10 ( 1 ): 176 - 183. | |
dc.identifier.citedreference | Mitchell JC, Li XF, Breen L, Thalabard JC, O’Byrne KT. The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat. Endocrinology. 2005; 146 ( 1 ): 323 - 331. | |
dc.identifier.citedreference | Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered expression of genes encoding neurotransmitter receptors in GnRH neurons of proestrous mice. Front Cell Neurosci. 2016; 10: 230. | |
dc.identifier.citedreference | Todman MG, Han SK, Herbison AE. Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience. 2005; 132 ( 3 ): 703 - 712. | |
dc.identifier.citedreference | Turi GF, Liposits Z, Moenter SM, Fekete C, Hrabovszky E. Origin of neuropeptide Y-containing afferents to gonadotropin-releasing hormone neurons in male mice. Endocrinology. 2003; 144 ( 11 ): 4967 - 4974. | |
dc.identifier.citedreference | Miller MM, Zhu L. Ovariectomy and age alter gonadotropin hormone releasing hormone-noradrenergic interactions. Neurobiol Aging. 1995; 16 ( 4 ): 613 - 625. | |
dc.identifier.citedreference | Campbell RE, Herbison AE. Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using conditional viral tract tracing. Endocrinology. 2007; 148 ( 12 ): 5884 - 5890. | |
dc.identifier.citedreference | Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A student’s guide to neural circuit tracing. Front Neurosci. 2019; 13: 897. | |
dc.identifier.citedreference | Han SK, Herbison AE. Norepinephrine suppresses gonadotropin-releasing hormone neuron excitability in the adult mouse. Endocrinology. 2008; 149 ( 3 ): 1129 - 1135. | |
dc.identifier.citedreference | Bergen H, Leung PC. Norepinephrine inhibition of pulsatile LH release: receptor specificity. Am J Physiol. 1986; 250 ( 2 Pt 1 ): E205 - 211. | |
dc.identifier.citedreference | Szawka RE, Poletini MO, Leite CM, et al. Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology. 2013; 154 ( 1 ): 363 - 374. | |
dc.identifier.citedreference | Scott CJ, Cumminst JT, Clarke IJ. Effects on plasma luteinizing hormone levels of microinjection of noradrenaline and adrenaline into the septo-preoptic area of the brain of the ovariectomized ewe: changes with season and chronic oestrogen treatment. J Neuroendocrinol. 1992; 4 ( 1 ): 131 - 141. | |
dc.identifier.citedreference | Tsukamura H, Nagatani S, Cagampang FR, Kawakami S, Maeda K. Corticotropin-releasing hormone mediates suppression of pulsatile luteinizing hormone secretion induced by activation of alpha-adrenergic receptors in the paraventricular nucleus in female rats. Endocrinology. 1994; 134 ( 3 ): 1460 - 1466. | |
dc.identifier.citedreference | I’Anson H, Sundling LA, Roland SM, Ritter S. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats. Endocrinology. 2003; 144 ( 10 ): 4325 - 4331. | |
dc.identifier.citedreference | Herbison AE. The gonadotropin-releasing hormone pulse generator. Endocrinology. 2018; 159 ( 11 ): 3723 - 3736. | |
dc.identifier.citedreference | Kovács A, Biró E, Szeleczky I, Telegdy G. Role of endogenous CRF in the mediation of neuroendocrine and behavioral responses to calcitonin gene-related peptide in rats. Neuroendocrinology. 1995; 62 ( 4 ): 418 - 424. | |
dc.identifier.citedreference | Poore LH, Helmstetter FJ. The effects of central injections of calcitonin gene-related peptide on fear-related behavior. Neurobiol Learn Mem. 1996; 66 ( 2 ): 241 - 245. | |
dc.identifier.citedreference | Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O’Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology. 2004; 145 ( 4 ): 1556 - 1563. | |
dc.identifier.citedreference | Li XF, Kinsey-Jones JS, Bowe JE, et al. A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress. 2009; 12 ( 3 ): 259 - 267. | |
dc.identifier.citedreference | Kinsey-Jones JS, Li XF, Bowe JE, Brain SD, Lightman SL, O’Byrne KT. Effect of calcitonin gene-related peptide on gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. J Neuroendocrinol. 2005; 17 ( 9 ): 541 - 544. | |
dc.identifier.citedreference | Bowe JE, Li XF, Kinsey-Jones JS, Brain SD, Lightman SL, O’Byrne KT. The role of corticotrophin-releasing hormone receptors in the calcitonin gene-related peptide-induced suppression of pulsatile luteinising hormone secretion in the female rat. Stress. 2008; 11 ( 4 ): 312 - 319. | |
dc.identifier.citedreference | Estienne MJ, Barb CR, Kesner JS, Kraeling RR, Rampacek GB. Luteinizing hormone secretion in hypophysial stalk-transected gilts given hydrocortisone acetate and pulsatile gonadotropin-releasing hormone. Domest Anim Endocrinol. 1991; 8 ( 3 ): 407 - 414. | |
dc.identifier.citedreference | Dubey AK, Plant TM. A suppression of gonadotropin secretion by cortisol in castrated male rhesus monkeys (Macaca mulatta) mediated by the interruption of hypothalamic gonadotropin-releasing hormone release. Biol Reprod. 1985; 33 ( 2 ): 423 - 431. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.