Show simple item record

Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite

dc.contributor.authorStolper, Daniel A.
dc.contributor.authorPu, Xiaofei
dc.contributor.authorLloyd, Max K.
dc.contributor.authorChristensen, Nikolas I.
dc.contributor.authorBucholz, Claire E.
dc.contributor.authorLange, Rebecca A.
dc.date.accessioned2022-07-05T21:01:05Z
dc.date.available2023-08-05 17:01:03en
dc.date.available2022-07-05T21:01:05Z
dc.date.issued2022-07
dc.identifier.citationStolper, Daniel A.; Pu, Xiaofei; Lloyd, Max K.; Christensen, Nikolas I.; Bucholz, Claire E.; Lange, Rebecca A. (2022). "Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite." Geochemistry, Geophysics, Geosystems 23(7): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/172968
dc.description.abstractThe deep ocean is generally considered to have changed from anoxic in the Precambrian to oxygenated by the Late Paleozoic (∼420–400 Ma) due to changes in atmospheric oxygen concentrations. When the transition occurred, that is, in the Early Paleozoic or not until the Late Paleozoic, is less well constrained. To address this, we measured Fe3+/ΣFe of volcanic rocks, sheeted dykes, gabbros, and ultramafic rocks from the Early Paleozoic (∼485 Ma) Bay of Islands (BOI) ophiolite as a proxy for hydrothermal alteration in the presence or absence of O2 derived from deep marine fluids. Combining this data with previously published data from the BOI indicates that volcanic rocks are oxidized relative to intrusive crustal rocks (0.35 ± 0.02 vs. 0.19 ± 0.01, 1 standard error), which we interpret to indicate that the volcanic section was altered by marine-derived fluids that contained some dissolved O2. We compare our results directly to the Macquarie Island and Troodos ophiolites, drilled oceanic crust, previously compiled data for ophiolitic volcanic rocks, and newly compiled data for ophiolitic intrusive rocks. These comparisons show that the BOI volcanic (but not intrusive) rocks are oxidized relative to Precambrian equivalents, but are less oxidized relative to Late Paleozoic to modern equivalents. We interpret these results to indicate that the Early Paleozoic ocean contained dissolved O2, but at concentrations ∼2.4× lower than for the Late Paleozoic to today.Key PointsWe report Fe3+/ΣFe in volcanic and intrusive crustal rocks and ultramafic rocks from the Early Paleozoic Bay of Islands (BOI) ophioliteFe3+/ΣFe of the BOI volcanic rocks are elevated compared to Precambrian systems but lower than Late Paleozoic to modern systemsThis difference indicates deep-ocean O2 levels in the Early Paleozoic were elevated compared to the Precambrian but lower than today
dc.publisherUniversity of Southampton
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriron redox
dc.subject.otherEarth history
dc.subject.otherhydrothermal
dc.subject.otherophiolites
dc.subject.otheroxygen
dc.titleConstraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172968/1/2021GC010196-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172968/2/ggge22839_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172968/3/ggge22839.pdf
dc.identifier.doi10.1029/2021GC010196
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceRutter, J. ( 2015 ). Characterising low temperature alteration and oxidation of the upper oceanic crust (PhD thesis). University of Southampton.
dc.identifier.citedreferenceRobinson, P. T., Gibson, I. L., & Panayiotou, A. (Eds.) ( 1987 ). Cyprus crustal study project: Initial report, holes CY-2 and 2a, Geological Survey of Canada paper. 85-29.
dc.identifier.citedreferenceSahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., et al. ( 2016 ). Oceanic oxygenation events in the anoxic Ediacaran Ocean. Geobiology, 14 ( 5 ), 457 – 468. https://doi.org/10.1111/gbi.12182
dc.identifier.citedreferenceSahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X., Shi, X., Scott, C., et al. ( 2012 ). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489 ( 7417 ), 546 – 549. https://doi.org/10.1038/nature11445
dc.identifier.citedreferenceSarmiento, J. L., & Gruber, N. ( 2006 ). Ocean biogeochemical dynamics. Princeton University Press.
dc.identifier.citedreferenceSarmiento, J. L., Herbert, T. D., & Toggweiler, J. R. ( 1988 ). Causes of anoxia in the world ocean. Global Biogeochemical Cycles, 2 ( 2 ), 115 – 128. https://doi.org/10.1029/GB002i002p00115
dc.identifier.citedreferenceShanks, W. C., III, Bischoff, J. L., & Rosenbauer, R. J. ( 1981 ). Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350 C. Geochimica et Cosmochimica Acta, 45 ( 11 ), 1977 – 1995. https://doi.org/10.1016/0016-7037(81)90054-5
dc.identifier.citedreferenceSlotznick, S. P., Eiler, J. M., & Fischer, W. W. ( 2018 ). The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochimica et Cosmochimica Acta, 224, 96 – 115. https://doi.org/10.1016/j.gca.2017.12.003
dc.identifier.citedreferenceSlotznick, S. P., Webb, S. M., Kirschvink, J. L., & Fischer, W. W. ( 2019 ). Mid-Proterozoic ferruginous conditions reflect postdepositional processes. Geophysical Research Letters, 46 ( 6 ), 3114 – 3123. https://doi.org/10.1029/2018GL081496
dc.identifier.citedreferenceSperling, E. A., Melchin, M. J., Fraser, T., Stockey, R. G., Farrell, U. C., Bhajan, L., et al. ( 2021 ). A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 7 ( 28 ), eabf4382. https://doi.org/10.1126/sciadv.abf4382
dc.identifier.citedreferenceSperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., et al. ( 2015 ). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523 ( 7561 ), 451 – 454. https://doi.org/10.1038/nature14589
dc.identifier.citedreferenceStaudigel, H., Plank, T., White, B., & Schmincke, H. ( 1996 ). Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Subduction Top to Bottom, 19 – 38. https://doi.org/10.1029/GM096p0019
dc.identifier.citedreferenceStevens, T. O., & McKinley, J. P. ( 2000 ). Abiotic controls on H 2 production from Basalt− Water reactions and implications for aquifer biogeochemistry. Environmental Science & Technology, 34 ( 5 ), 826 – 831. https://doi.org/10.1021/es990583g
dc.identifier.citedreferenceStolper, D. A., & Bucholz, C. E. ( 2019 ). Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proceedings of the National Academy of Sciences, 116 ( 18 ), 8746 – 8755. https://doi.org/10.1073/pnas.1821847116
dc.identifier.citedreferenceStolper, D. A., Higgins, J. A., & Derry, L. A. ( 2021 ). The role of the solid Earth in regulating atmospheric O 2 levels. American Journal of Science, 321 ( 10 ), 1381 – 1444. https://doi.org/10.2475/10.2021.01
dc.identifier.citedreferenceStolper, D. A., & Keller, C. B. ( 2018 ). A record of deep-ocean dissolved O 2 from the oxidation state of iron in submarine basalts. Nature, 553 ( 7688 ), 323 – 327. https://doi.org/10.1038/nature25009
dc.identifier.citedreferenceSwanson-Hysell, N. L., & Macdonald, F. A. ( 2017 ). Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 45 ( 8 ), 719 – 722. https://doi.org/10.1130/G38985.1
dc.identifier.citedreferenceTaylor, B., & Martinez, F. ( 2003 ). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210 ( 3–4 ), 481 – 497. https://doi.org/10.1016/S0012-821X(03)00167-5
dc.identifier.citedreferenceTostevin, R., & Mills, B. J. ( 2020 ). Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 ( 4 ), 20190137. https://doi.org/10.1098/rsfs.2019.0137
dc.identifier.citedreferenceVarne, R., Brown, A. V., & Falloon, T. ( 2000 ). Macquarie island: Its geology, structural history, and the timing and tectonic setting of its N-MORB to E-MORB magmatism. Special Papers-Geological Society of America. 301–320.
dc.identifier.citedreferenceWallace, M. W., Shuster, A., Greig, A., Planavsky, N. J., & Reed, C. P. ( 2017 ). Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466, 12 – 19. https://doi.org/10.1016/j.epsl.2017.02.046
dc.identifier.citedreferenceWilliams, H. ( 1973 ). Bay of islands map-area, Newfoundland: Canada geology. Survey Paper, 72 ( 34 ), 7.
dc.identifier.citedreferenceWilliams, H., & Malpas, J. ( 1972 ). Sheeted dikes and brecciated dike rocks within transported igneous complexes Bay of Islands, Western Newfoundland. Canadian Journal of Earth Sciences, 9 ( 9 ), 1216 – 1229. https://doi.org/10.1139/e72-105
dc.identifier.citedreferenceWilson, A. D. ( 1960 ). The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, 85 ( 1016 ), 823 – 827. https://doi.org/10.1039/AN9608500823
dc.identifier.citedreferenceWood, R., Donoghue, P. C., Lenton, T. M., Liu, A. G., & Poulton, S. W. ( 2020 ). The origin and rise of complex life: Progress requires interdisciplinary integration and hypothesis testing. Interface Focus, 10 ( 4 ), 20200024. https://doi.org/10.1098/rsfs.2020.0024
dc.identifier.citedreferenceYan, W., & Casey, J. F. ( 2020 ). A new concordia age for the ‘forearc’ Bay of Islands Ophiolite Complex, Western Newfoundland utilizing spatially-resolved LA-ICP-MS U-Pb analyses of zircon. Gondwana Research, 86, 1 – 22. https://doi.org/10.1016/j.gr.2020.05.007
dc.identifier.citedreferenceZhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A., & Hirschmann, M. M. ( 2018 ). Determination of Fe 3+ /ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chemical Geology, 479, 166 – 175. https://doi.org/10.1016/j.chemgeo.2018.01.006
dc.identifier.citedreferenceYeung, L. Y. ( 2017 ). Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma. Earth and Planetary Science Letters, 480, 66 – 74. https://doi.org/10.1016/j.epsl.2017.09.044
dc.identifier.citedreferenceAlcott, L. J., Mills, B. J., & Poulton, S. W. ( 2019 ). Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366 ( 6471 ), 1333 – 1337. https://doi.org/10.1126/science.aax6459
dc.identifier.citedreferenceAlgeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W., & Canfield, D. E. ( 2015 ). Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12 ( 7 ), 2131 – 2151. https://doi.org/10.5194/bg-12-2131-2015
dc.identifier.citedreferenceAlt, J. C., Laverne, C., Vanko, D. A., Tartarotti, P., Teagle, D. A., Bach, W., et al. ( 1996 ). Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from site 504 (DSDP legs 69, 70, and 83, and ODP legs 111, 137, 140, and 148). Proceedings of the Ocean Drilling Program, Scientific Results, 148, 417 – 434.
dc.identifier.citedreferenceArchibald, D. A., & Farrar, E. ( 1976 ). K–Ar ages of amphiboles from the Bay of Islands ophiolite and the Little Port Complex, Western Newfoundland, and their geological implications. Canadian Journal of Earth Sciences, 13 ( 4 ), 520 – 529. https://doi.org/10.1139/e76-055
dc.identifier.citedreferenceBach, W., & Edwards, K. J. ( 2003 ). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67 ( 20 ), 3871 – 3887. https://doi.org/10.1016/S0016-7037(03)00304-1
dc.identifier.citedreferenceBlamey, N. J., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K., et al. ( 2016 ). Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44 ( 8 ), 651 – 654. https://doi.org/10.1130/G37937.1
dc.identifier.citedreferenceBlättler, C. L., Bergmann, K. D., Kah, L. C., Gómez-Pérez, I., & Higgins, J. A. ( 2020 ). Constraints on Meso-to Neoproterozoic seawater from ancient evaporite deposits. Earth and Planetary Science Letters, 532, 115951. https://doi.org/10.1016/j.epsl.2019.115951
dc.identifier.citedreferenceBrounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. ( 2015 ). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43 ( 9 ), 775 – 778. https://doi.org/10.1130/G36742.1
dc.identifier.citedreferenceBrounce, M. N., Kelley, K., & Cottrell, E. ( 2014 ). Variations in Fe 3+ /ΣFe of Mariana arc basalts and mantle wedge f O 2. Journal of Petrology, 55 ( 12 ), 2513 – 2536. https://doi.org/10.1093/petrology/egu065
dc.identifier.citedreferenceBucholz, C. E., & Spencer, C. J. ( 2019 ). Strongly peraluminous granites across the Archean–Proterozoic transition. Journal of Petrology, 60 ( 7 ), 1299 – 1348. https://doi.org/10.1093/petrology/egz033
dc.identifier.citedreferenceCanfield, D. E. ( 1998 ). A new model for Proterozoic ocean chemistry. Nature, 396 ( 6710 ), 450 – 453. https://doi.org/10.1038/24839
dc.identifier.citedreferenceCanfield, D. E. ( 2005 ). The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33, 1 – 36. https://doi.org/10.1146/annurev.earth.33.092203.122711
dc.identifier.citedreferenceCasey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A., & Rosencrantz, E. ( 1981 ). Heterogeneous nature of the oceanic crust and upper mantle: A perspective from the Bay of Islands Ophiolite. In C. Emiliani (Ed.), The Sea (Vol. 7, pp. 305 – 338 ). Wiley.
dc.identifier.citedreferenceCasey, J. F., Elthon, D. L., Siroky, F. X., Karson, J. A., & Sullivan, J. ( 1985 ). Geochemical and geological evidence bearing on the origin of the Bay of islands and coastal complex ophiolites of Western Newfoundland. Tectonophysics, 116 ( 1–2 ), 1 – 40. https://doi.org/10.1016/0040-1951(85)90220-3
dc.identifier.citedreferenceCasey, J. F., & Kidd, W. S. F. ( 1981 ). A parallochthonous group of sedimentary rocks unconformable overlying the Bay of Islands ophiolite complex, North Arm Mountain, Newfoundland. Canadian Journal of Earth Sciences, 18 ( 6 ), 1035 – 1050. https://doi.org/10.1139/e81-100
dc.identifier.citedreferenceCawood, P. A., & Suhr, G. ( 1992 ). Generation and obduction of ophiolites: Constraints from the Bay of islands complex, Western Newfoundland. Tectonics, 11 ( 4 ), 884 – 897. https://doi.org/10.1029/92TC00471
dc.identifier.citedreferenceChristensen, N. I., & Salisbury, M. H. ( 1982 ). Lateral heterogeneity in the seismic structure of the oceanic crust inferred from velocity studies in the Bay of Islands ophiolite, Newfoundland. Geophysical Journal International, 68 ( 3 ), 675 – 688. https://doi.org/10.1111/j.1365-246X.1982.tb04922.x
dc.identifier.citedreferenceChurch, W. T., & Stevens, R. K. ( 1971 ). Early Paleozoic ophiolite complexes of the Newfoundland Appalachians as mantle-oceanic crust sequences. Journal of Geophysical Research, 76 ( 5 ), 1460 – 1466. https://doi.org/10.1029/JB076i005p01460
dc.identifier.citedreferenceCoggon, R. M. ( 2006 ). Hydrothermal alteration of the ocean crust: Insights from Macquarie island and drilled in situ ocean crust (PhD thesis). University of Southampton.
dc.identifier.citedreferenceCoggon, R. M., Teagle, D. A., Harris, M., Davidson, G. J., Alt, J. C., & Brewer, T. S. ( 2016 ). Hydrothermal contributions to global biogeochemical cycles: Insights from the Macquarie Island ophiolite. Lithos, 264, 329 – 347. https://doi.org/10.1016/j.lithos.2016.08.024
dc.identifier.citedreferenceCoish, R. A. ( 1977 ). Igneous and metamorphic petrology of the mafic units of the Betts Cove and Blow-Me-Down ophiolites (PhD thesis). The University of Western Ontario.
dc.identifier.citedreferenceCoogan, L. A., & Gillis, K. M. ( 2018 ). Low-temperature alteration of the seafloor: Impacts on ocean chemistry. Annual Review of Earth and Planetary Sciences, 46 ( 1 ), 21 – 45. https://doi.org/10.1146/annurev-earth-082517-010027
dc.identifier.citedreferenceCoogan, L. A., Parrish, R. R., & Roberts, N. M. ( 2016 ). Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating. Geology, 44 ( 2 ), 147 – 150. https://doi.org/10.1130/G37212.1
dc.identifier.citedreferenceCottrell, E., & Kelley, K. A. ( 2011 ). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305 ( 3 ), 270 – 282. https://doi.org/10.1016/j.epsl.2011.03.014
dc.identifier.citedreferenceDahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P., Gill, B. C., Gordon, G. W., et al. ( 2010 ). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107 ( 42 ), 17911 – 17915. https://doi.org/10.1073/pnas.1011287107
dc.identifier.citedreferenceDallmeyer, R. D., & Williams, H. ( 1975 ). 40 Ar/ 39 Ar ages from the Bay of islands metamorphic aureole: Their bearing on the timing of ordovician ophiolite obduction. Canadian Journal of Earth Sciences, 12 ( 9 ), 1685 – 1690. https://doi.org/10.1139/e75-148
dc.identifier.citedreferenceDewey, J. F., & Casey, J. F. ( 2013 ). The sole of an ophiolite: The ordovician Bay of islands complex, Newfoundland. Journal of the Geological Society, 170 ( 5 ), 715 – 722. https://doi.org/10.1144/jgs2013-017
dc.identifier.citedreferenceDuke, N. A., & Hutchinson, R. W. ( 1974 ). Geological relationships between massive sulfide bodies and ophiolitic volcanic rocks near York Harbour, Newfoundland. Canadian Journal of Earth Sciences, 11 ( 1 ), 53 – 69. https://doi.org/10.1139/e74-005
dc.identifier.citedreferenceDunning, G., & Krogh, T. ( 1985 ). Geochronology of ophiolites of the Newfoundland appalachians. Canadian Journal of Earth Sciences, 22 ( 11 ), 1659 – 1670. https://doi.org/10.1139/e85-174
dc.identifier.citedreferenceElderfield, H., & Schultz, A. ( 1996 ). Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences, 24 ( 1 ), 191 – 224. https://doi.org/10.1146/annurev.earth.24.1.191
dc.identifier.citedreferenceElthon, D. ( 1991 ). Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature, 354 ( 6349 ), 140 – 143. https://doi.org/10.1038/354140a0
dc.identifier.citedreferenceEvans, K. A. ( 2012 ). The redox budget of subduction zones. Earth-Science Reviews, 113 ( 1–2 ), 11 – 32. https://doi.org/10.1016/j.earscirev.2012.03.003
dc.identifier.citedreferenceFarquhar, J., Bao, H., & Thiemens, M. ( 2000 ). Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289 ( 5480 ), 756 – 758. https://doi.org/10.1126/science.289.5480.756
dc.identifier.citedreferenceFitton, J. G., & Gill, R. C. O. ( 1970 ). The oxidation of ferrous iron in rocks during mechanical grinding. Geochimica et Cosmochimica Acta, 34 ( 4 ), 518 – 524. https://doi.org/10.1016/0016-7037(70)90143-2
dc.identifier.citedreferenceGale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J. ( 2013 ). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14 ( 3 ), 489 – 518. https://doi.org/10.1029/2012GC004334
dc.identifier.citedreferenceGibson, I. L., Malpas, J., Robinson, P. T., & Xenophontos, C. (Eds.) ( 1989 ). Cyprus crustal study project: Initial report, hole CY-4, Geological Survey of Canada paper. 88-9.
dc.identifier.citedreferenceGibson, I. L., Malpas, J., Robinson, P. T., & Xenophontos, C. (Eds.) ( 1991 ). Cyprus crustal study project: Initial report, holes Cy-1 and 1a, Geological Survey of Canada paper. 90-20.
dc.identifier.citedreferenceHart, S. R., & Staudigel, H. ( 1978 ). Oceanic crust: Age of hydrothermal alteration. Geophysical Research Letters, 5 ( 12 ), 1009 – 1012. https://doi.org/10.1029/GL005i012p01009
dc.identifier.citedreferenceHart, S. R., & Staudigel, H. ( 1982 ). The control of alkalies and uranium in seawater by ocean crust alteration. Earth and Planetary Science Letters, 58 ( 2 ), 202 – 212. https://doi.org/10.1016/0012-821X(82)90194-7
dc.identifier.citedreferenceJacobsen, S. B., & Wasserburg, G. J. ( 1979 ). Nd and Sr isotopic study of the Bay of Islands ophiolite complex and the evolution of the source of midocean ridge basalts. Journal of Geophysical Research, 84 ( B13 ), 7429 – 7445. https://doi.org/10.1029/JB084iB13p07429
dc.identifier.citedreferenceJenner, G., Dunning, G., Malpas, J., Brown, M., & Brace, T. ( 1991 ). Bay of islands and little port complexes, revisited: Age, geochemical and isotopic evidence confirm suprasubduction-zone origin. Canadian Journal of Earth Sciences, 28 ( 10 ), 1635 – 1652. https://doi.org/10.1139/e91-146
dc.identifier.citedreferenceJohnson, H. P., & Semyan, S. W. ( 1994 ). Age variation in the physical properties of oceanic basalts: Implications for crustal formation and evolution. Journal of Geophysical Research, 99 ( B2 ), 3123 – 3134. https://doi.org/10.1029/93JB00717
dc.identifier.citedreferenceKah, L. C., Lyons, T. W., & Frank, T. D. ( 2004 ). Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431 ( 7010 ), 834 – 838. https://doi.org/10.1038/nature0297
dc.identifier.citedreferenceKelley, K. A., Plank, T., Ludden, J., & Staudigel, H. ( 2003 ). Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 4 ( 6 ). https://doi.org/10.1029/2002GC000435
dc.identifier.citedreferenceKendall, B., Komiya, T., Lyons, T. W., Bates, S. M., Gordon, G. W., Romaniello, S. J., et al. ( 2015 ). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica et Cosmochimica Acta, 156, 173 – 193. https://doi.org/10.1016/j.gca.2015.02.025
dc.identifier.citedreferenceLaakso, T. A., & Schrag, D. P. ( 2014 ). Regulation of atmospheric oxygen during the Proterozoic. Earth and Planetary Science Letters, 388, 81 – 91. https://doi.org/10.1016/j.epsl.2013.11.049
dc.identifier.citedreferenceLenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J., Ozaki, K., Saltzman, M. R., & Porada, P. ( 2016 ). Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences, 113 ( 35 ), 9704 – 9709. https://doi.org/10.1073/pnas.1604787113
dc.identifier.citedreferenceLyons, T. W., Reinhard, C. T., & Planavsky, N. J. ( 2014 ). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506 ( 7488 ), 307 – 315. https://doi.org/10.1038/nature13068
dc.identifier.citedreferenceMac Niocaill, C., Van der Pluijm, B. A., & Van der Voo, R. ( 1997 ). Ordovician paleogeography and the evolution of the Iapetus Ocean. Geology, 25 ( 2 ), 159 – 162. https://doi.org/10.1130/0091-7613(1997)025%3C0159:OPATEO%3E2.3.CO;2
dc.identifier.citedreferenceMalpas, J. ( 1976 ). The petrology and petrogenesis of the Bay of Islands ophiolite suite, western Newfoundland (PhD thesis). Memorial University of Newfoundland.
dc.identifier.citedreferenceMalpas, J. ( 1977 ). Petrology and tectonic significance of Newfoundland ophiolites, with examples from the Bay of Islands. In North American ophiolites (Vol. 95, pp. 13 – 23 ). State of Oregon Department of Geology and Mineral Resources.
dc.identifier.citedreferenceNeal, C., & Stanger, G. ( 1983 ). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66, 315 – 320. https://doi.org/10.1016/0012-821X(83)90144-9
dc.identifier.citedreferenceOch, L. M., & Shields-Zhou, G. A. ( 2012 ). The neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110 ( 1 ), 26 – 57. https://doi.org/10.1016/j.earscirev.2011.09.004
dc.identifier.citedreferenceOsozawa, S., Shinjo, R., Lo, C.-H., Jahn, B., Hoang, N., Sasaki, M., et al. ( 2012 ). Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction? Lithosphere, 4 ( 6 ), 497 – 510. https://doi.org/10.1130/L205.1
dc.identifier.citedreferenceParendo, C. A., Jacobsen, S. B., & Wang, K. ( 2017 ). K isotopes as a tracer of seafloor hydrothermal alteration. Proceedings of the National Academy of Sciences, 114 ( 8 ), 1827 – 1831. https://doi.org/10.1073/pnas.1609228114
dc.identifier.citedreferencePavlov, A., & Kasting, J. ( 2002 ). Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology, 2 ( 1 ), 27 – 41. https://doi.org/10.1089/153110702753621321
dc.identifier.citedreferencePlanavsky, N. J., Cole, D. B., Isson, T. T., Reinhard, C. T., Crockford, P. W., Sheldon, N. D., & Lyons, T. W. ( 2018 ). A case for low atmospheric oxygen levels during Earth’s middle history. Emerging Topics in Life Sciences, 2 ( 2 ), 149 – 159. https://doi.org/10.1042/ETLS20170161
dc.identifier.citedreferencePlanavsky, N. J., Robbins, L. J., Kamber, B. S., & Schoenberg, R. ( 2020 ). Weathering, alteration and reconstructing Earth’s oxygenation. Interface Focus, 10 ( 4 ), 20190140. https://doi.org/10.1098/rsfs.2019.0140
dc.identifier.citedreferenceReinhard, C. T., & Planavsky, N. J. ( 2022 ). The history of ocean oxygenation. Annual Review of Marine Science, 14 ( 1 ), 331 – 353. https://doi.org/10.1146/annurev-marine-031721-104005
dc.identifier.citedreferenceRichards, J. P. ( 2015 ). The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233, 27 – 45. https://doi.org/10.1016/j.lithos.2014.12.011
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.