Show simple item record

Unique lingual expression of the Hedgehog pathway antagonist Hedgehog-interacting protein in filiform papillae during homeostasis and ectopic expression in fungiform papillae during Hedgehog signaling inhibition

dc.contributor.authorKumari, Archana
dc.contributor.authorLi, Libo
dc.contributor.authorErmilov, Alexandre N.
dc.contributor.authorFranks, Nicole E.
dc.contributor.authorDlugosz, Andrzej A.
dc.contributor.authorAllen, Benjamin L.
dc.contributor.authorMistretta, Charlotte M.
dc.date.accessioned2022-07-05T21:01:21Z
dc.date.available2023-08-05 17:01:10en
dc.date.available2022-07-05T21:01:21Z
dc.date.issued2022-07
dc.identifier.citationKumari, Archana; Li, Libo; Ermilov, Alexandre N.; Franks, Nicole E.; Dlugosz, Andrzej A.; Allen, Benjamin L.; Mistretta, Charlotte M. (2022). "Unique lingual expression of the Hedgehog pathway antagonist Hedgehog-interacting protein in filiform papillae during homeostasis and ectopic expression in fungiform papillae during Hedgehog signaling inhibition." Developmental Dynamics 251(7): 1175-1195.
dc.identifier.issn1058-8388
dc.identifier.issn1097-0177
dc.identifier.urihttps://hdl.handle.net/2027.42/172971
dc.description.abstractBackgroundHedgehog (HH) signaling is essential for homeostasis in gustatory fungiform papillae (FP) and taste buds. However, activities of HH antagonists in these tissues remain unexplored. We investigated a potential role for HH-interacting protein (HHIP), an endogenous pathway antagonist, in regulating HH signaling during taste organ homeostasis. We found a restricted pattern of Hhip-expressing cells in the anterior epithelium of each nongustatory filiform papilla (FILIF) only. To test for roles in antagonism of HH signaling, we investigated HHIP after pathway inhibition with SMO inhibition via sonidegib and Smo deletion, Gli2 deletion/suppression, or with chorda tympani/lingual nerve cut.ResultsIn all approaches, the HHIP expression pattern was retained in FILIF suggesting HH-independent regulation of HHIP. Remarkably, after pathway inhibition, HHIP expression was detected also in the conical, FILIF-like atypical FP. We found a close association of de novo expression of HHIP in atypical FP with loss of Gli1+, HH-responding cells. Further, we report that PTCH1 is another potential HH antagonist in FILIF that co-localizes with HHIP.ConclusionsAfter HH pathway inhibition the ectopic expression of HHIP correlates with a FILIF-like morphology in atypical FP and we propose that localized expression of the HH antagonist HHIP regulates pathway inhibition to maintain FILIF during tongue homeostasis.Key FindingsUnique and restricted expression of Hedgehog antagonist, HHIP in filiform papillae.Ectopic HHIP expression after Hedgehog signaling inhibition.Cell type-specific regulation of core Hedgehog pathway components in the adult tongue.Ptch1 emerged to have dual role: Hedgehog receptor in fungiform papillae and Hedgehog antagonist in filiform papillae.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othertaste bud
dc.subject.otherPtch1
dc.subject.otherhedgehog interacting protein
dc.subject.otherhedgehog antagonist
dc.subject.otherchorda tympani nerve
dc.subject.othersonidegib
dc.titleUnique lingual expression of the Hedgehog pathway antagonist Hedgehog-interacting protein in filiform papillae during homeostasis and ectopic expression in fungiform papillae during Hedgehog signaling inhibition
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172971/1/dvdy456_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172971/2/dvdy456.pdf
dc.identifier.doi10.1002/dvdy.456
dc.identifier.sourceDevelopmental Dynamics
dc.identifier.citedreferenceWong P, Colucci-Guyon E, Takahashi K, Gu C, Babinet C, Coulombe PA. Introducing a null mutation in the mouse K6alpha and K6beta genes reveals their essential structural role in the oral mucosa. J Cell Biol. 2000; 150 ( 4 ): 921 - 928. doi: 10.1083/jcb.150.4.921
dc.identifier.citedreferenceHoltz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. Secreted HHIP1 interacts with heparan sulfate and regulates hedgehog ligand localization and function. J Cell Biol. 2015; 209 ( 5 ): 739 - 757. doi: 10.1083/jcb.201411024
dc.identifier.citedreferenceHoltz AM, Peterson KA, Nishi Y, et al. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development. 2013; 140 ( 16 ): 3423 - 3434. doi: 10.1242/dev.095083
dc.identifier.citedreferenceJeong J, McMahon AP. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development. 2005; 132 ( 1 ): 143 - 154. doi: 10.1242/dev.01566
dc.identifier.citedreferenceKwong L, Bijlsma MF, Roelink H. Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling. Nat Commun. 2014; 5: 4849. doi: 10.1038/ncomms5849
dc.identifier.citedreferencePeterson KA, Nishi Y, Ma W, et al. Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev. 2012; 26 ( 24 ): 2802 - 2816. doi: 10.1101/gad.207142.112
dc.identifier.citedreferenceVokes SA, Ji H, McCuine S, et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development. 2007; 134 ( 10 ): 1977 - 1989. doi: 10.1242/dev.001966
dc.identifier.citedreferenceVokes SA, Ji H, Wong WH, McMahon AP. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 2008; 22 ( 19 ): 2651 - 2663. doi: 10.1101/gad.1693008
dc.identifier.citedreferenceLao T, Jiang Z, Yun J, et al. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A. 2016; 113 ( 32 ): E4681 - E4687. doi: 10.1073/pnas.1602342113
dc.identifier.citedreferenceCleaton-Jones P. Histological observations in the soft palate of the albino rat. J Anat. 1971; 110 ( Pt 1 ): 39 - 47.
dc.identifier.citedreferenceMiller IJ, Spangler K. Taste bud distribution and innervation on the palate of rat. Chem Senses. 1982; 7 ( 1 ): 99 - 108. doi: 10.1093/chemse/7.1.99
dc.identifier.citedreferenceHume WJ, Potten CS. The ordered columnar structure of mouse filiform papillae. J Cell Sci. 1976; 22 ( 1 ): 149 - 160. doi: 10.1093/chemse/7.1.99
dc.identifier.citedreferenceIwasaki S, Okumura Y, Kumakura M. Ultrastructural study of the relationship between the morphogenesis of filiform papillae and the keratinization of the lingual epithelium in the mouse. Cells Tissues Organs. 1999; 165 ( 2 ): 91 - 103. doi: 10.1159/000016679
dc.identifier.citedreferenceKumari A, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. Role of innervation in HH signaling in the adult mouse fungiform taste papilla. Program no. 50.27/W4. Paper presented at: Neuroscience Abstracts; 2016; San Diego, CA. https://www.abstractsonline.com/pp8/index.html#!/4071/presentation/8805.
dc.identifier.citedreferenceOlsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer. 2004; 4: 43. doi: 10.1186/1471-2407-4-43
dc.identifier.citedreferenceMoayedi Y, Duenas-Bianchi LF, Lumpkin EA. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci Rep. 2018; 8 ( 1 ): 9975. doi: 10.1038/s41598-018-28195-2
dc.identifier.citedreferenceByrd KM, Lough KJ, Patel JH, Descovich CP, Curtis TA, Williams SE. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development. Development. 2016; 143 ( 15 ): 2803 - 2817. doi: 10.1242/dev.136010
dc.identifier.citedreferenceJonker L, Kist R, Aw A, Wappler I, Peters H. Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium. Mech Dev. 2004; 121 ( 11 ): 1313 - 1322. doi: 10.1016/j.mod.2004.07.002
dc.identifier.citedreferenceNishiguchi Y, Ohmoto M, Koki J, et al. Bcl11b/Ctip2 is required for development of lingual papillae in mice. Dev Biol. 2016; 416 ( 1 ): 98 - 110. doi: 10.1016/j.ydbio.2016.06.001
dc.identifier.citedreferenceKawasaki M, Kawasaki K, Oommen S, et al. Regional regulation of Filiform tongue papillae development by Ikkalpha/Irf6. Dev Dyn. 2016; 245 ( 9 ): 937 - 946. doi: 10.1002/dvdy.24427
dc.identifier.citedreferenceTanaka T, Komai Y, Tokuyama Y, et al. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat Cell Biol. 2013; 15 ( 5 ): 511 - 518. doi: 10.1038/ncb2719
dc.identifier.citedreferenceCoulombe PA, Omary MB. ’Hard’ and ’soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002; 14 ( 1 ): 110 - 122. doi: 10.1016/s0955-0674(01)00301-5
dc.identifier.citedreferenceKatoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 2009; 9 ( 7 ): 873 - 886. doi: 10.2174/156652409789105570
dc.identifier.citedreferenceLee BNR, Son YS, Lee D, et al. Hedgehog-interacting protein (HIP) regulates apoptosis evasion and Angiogenic function of late endothelial progenitor cells. Sci Rep. 2017; 7 ( 1 ): 12449. doi: 10.1038/s41598-017-12571-5
dc.identifier.citedreferenceHebrok M, Kim SK, Melton DA. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes Dev. 1998; 12 ( 11 ): 1705 - 1713. doi: 10.1101/gad.12.11.1705
dc.identifier.citedreferenceKawahira H, Ma NH, Tzanakakis ES, McMahon AP, Chuang PT, Hebrok M. Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development. 2003; 130 ( 20 ): 4871 - 4879. doi: 10.1242/dev.00653
dc.identifier.citedreferenceCastillo D, Seidel K, Salcedo E, et al. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development. 2014; 141 ( 15 ): 2993 - 3002. doi: 10.1242/dev.107631
dc.identifier.citedreferenceCastillo-Azofeifa D, Losacco JT, Salcedo E, Golden EJ, Finger TE, Barlow LA. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development. 2017; 144 ( 17 ): 3054 - 3065. doi: 10.1242/dev.150342
dc.identifier.citedreferenceErmilov AN, Kumari A, Li L, et al. Maintenance of taste organs is strictly dependent on epithelial Hedgehog/GLI signaling. PLoS Genet. 2016; 12 ( 11 ): e1006442. doi: 10.1371/journal.pgen.1006442
dc.identifier.citedreferenceKumari A, Ermilov AN, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation. J Neurophysiol. 2015; 113 ( 3 ): 1034 - 1040. doi: 10.1152/jn.00822.2014
dc.identifier.citedreferenceKumari A, Ermilov AN, Grachtchouk M, et al. Recovery of taste organs and sensory function after severe loss from hedgehog/smoothened inhibition with cancer drug sonidegib. Proc Natl Acad Sci U S A. 2017; 114 ( 48 ): E10369 - E10378. doi: 10.1073/pnas.1712881114
dc.identifier.citedreferenceKumari A, Yokota Y, Li L, Bradley RM, Mistretta CM. Species generalization and differences in hedgehog pathway regulation of fungiform and circumvallate papilla taste function and somatosensation demonstrated with sonidegib. Sci Rep. 2018; 8 ( 1 ): 16150. doi: 10.1038/s41598-018-34399-3
dc.identifier.citedreferenceLiu HX, Ermilov A, Grachtchouk M, et al. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance. Dev Biol. 2013; 382 ( 1 ): 82 - 97. doi: 10.1016/j.ydbio.2013.07.022
dc.identifier.citedreferenceLu WJ, Mann RK, Nguyen A, et al. Neuronal delivery of hedgehog directs spatial patterning of taste organ regeneration. Proc Natl Acad Sci U S A. 2018; 115 ( 2 ): E200 - E209. doi: 10.1073/pnas.1719109115
dc.identifier.citedreferenceMistretta CM, Kumari A. Tongue and taste organ biology and function:homeostasis maintained by hedgehog signaling. Annu Rev Physiol. 2017; 79 ( 24 ): 1 - 22. doi: 10.1146/annurev-physiol-022516-034202
dc.identifier.citedreferenceMistretta CM, Kumari A. Hedgehog signaling regulates taste organs and Oral sensation: distinctive roles in the epithelium, Stroma, and in. Int J Mol Sci. 2019; 20 ( 6 ): 1341. doi: 10.3390/ijms20061341
dc.identifier.citedreferenceBriscoe J, Therond PP. The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013; 14 ( 7 ): 416 - 429. doi: 10.1038/nrm3598
dc.identifier.citedreferenceChuang PT, Kawcak T, McMahon AP. Feedback control of mammalian hedgehog signaling by the hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 2003; 17 ( 3 ): 342 - 347. doi: 10.1101/gad.1026303
dc.identifier.citedreferenceChuang PT, McMahon AP. Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature. 1999; 397 ( 6720 ): 617 - 621. doi: 10.1038/17611
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.