Show simple item record

Reduced Bone Mass in Collagen Prolyl 4-Hydroxylase P4ha1+/−; P4ha2−/− Compound Mutant Mice

dc.contributor.authorTolonen, Jussi-Pekka
dc.contributor.authorSalo, Antti M
dc.contributor.authorFinnilä, Mikko
dc.contributor.authorAro, Ellinoora
dc.contributor.authorKarjalainen, Emma
dc.contributor.authorRonkainen, Veli-Pekka
dc.contributor.authorDrushinin, Kati
dc.contributor.authorMerceron, Christophe
dc.contributor.authorIzzi, Valerio
dc.contributor.authorSchipani, Ernestina
dc.contributor.authorMyllyharju, Johanna
dc.date.accessioned2022-07-05T21:02:00Z
dc.date.available2023-07-05 17:01:58en
dc.date.available2022-07-05T21:02:00Z
dc.date.issued2022-06
dc.identifier.citationTolonen, Jussi-Pekka ; Salo, Antti M; Finnilä, Mikko ; Aro, Ellinoora; Karjalainen, Emma; Ronkainen, Veli-Pekka ; Drushinin, Kati; Merceron, Christophe; Izzi, Valerio; Schipani, Ernestina; Myllyharju, Johanna (2022). "Reduced Bone Mass in Collagen Prolyl 4- Hydroxylase P4ha1+/- ; P4ha2- /- Compound Mutant Mice." JBMR Plus 6(6): n/a-n/a.
dc.identifier.issn2473-4039
dc.identifier.issn2473-4039
dc.identifier.urihttps://hdl.handle.net/2027.42/172988
dc.description.abstractProper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1+/−; P4ha2−/− mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1+/−; P4ha2−/− tibia and the C-P4H activity in primary P4ha1+/−; P4ha2−/− osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1+/−; P4ha2−/− marrow. Thus, the P4ha1+/−; P4ha2−/− mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherBONE HISTOMORPHOMETRY
dc.subject.otherBONE μCT
dc.subject.otherCOLLAGEN
dc.subject.otherGENETIC ANIMAL MODELS
dc.subject.otherOSTEOBLASTS
dc.titleReduced Bone Mass in Collagen Prolyl 4-Hydroxylase P4ha1+/−; P4ha2−/− Compound Mutant Mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeriatric Medicine
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172988/1/jbm410630_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172988/2/jbm410630.pdf
dc.identifier.doi10.1002/jbm4.10630
dc.identifier.sourceJBMR Plus
dc.identifier.citedreferenceTikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019; 569 ( 7755 ): 222 - 228.
dc.identifier.citedreferenceNapolitano F, Di Iorio V, Testa F, et al. Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation. Clin Genet. 2018; 93 ( 5 ): 982 - 991.
dc.identifier.citedreferenceJudex S, Garman R, Squire M, Donahue L-R, Rubin C. Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology. J Bone Miner Res. 2004; 19 ( 4 ): 600 - 606.
dc.identifier.citedreferenceDempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013; 28 ( 1 ): 2 - 17.
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010; 25 ( 7 ): 1468 - 1486.
dc.identifier.citedreferenceSugita S, Suzumura T, Nakamura A, Tsukiji S, Ujihara Y, Nakamura M. Second harmonic generation light quantifies the ratio of type III to total (I + III) collagen in a bundle of collagen fiber. Sci Rep. 2021; 11 ( 1 ): 11874.
dc.identifier.citedreferenceTilbury K, Lien C-H, Chen S-J, Campagnola PJ. Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality. Biophys J. 2014; 106 ( 2 ): 354 - 365.
dc.identifier.citedreferenceJämsä T, Koivukangas A, Ryhänen J, Jalovaara P, Tuukkanen J. Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. J Bone Miner Res. 1999; 14 ( 10 ): 1708 - 1713.
dc.identifier.citedreferenceDeckard C, Walker A, Hill BJF. Using three-point bending to evaluate tibia bone strength in ovariectomized young mice. J Biol Phys. 2017; 43 ( 1 ): 139 - 148.
dc.identifier.citedreferenceRitchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008; 43 ( 5 ): 798 - 812.
dc.identifier.citedreferenceGregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004; 329 ( 1 ): 77 - 84.
dc.identifier.citedreferenceKivirikko KI, Myllylä R. Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol. 1982; 82: 245 - 304.
dc.identifier.citedreferenceHao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021; 184 ( 13 ): 3573 - 3587.
dc.identifier.citedreferenceStegen S, Laperre K, Eelen G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature. 2019; 565 ( 7740 ): 511 - 515.
dc.identifier.citedreferenceGuerrero-Juarez CF, Dedhia PH, Jin S, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun. 2019; 10 ( 1 ): 650.
dc.identifier.citedreferenceVolk SW, Shah SR, Cohen AJ, et al. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif Tissue Int. 2014; 94 ( 6 ): 621 - 631.
dc.identifier.citedreferenceChen F, Guo R, Itoh S, et al. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res. 2014; 29 ( 6 ): 1412 - 1423.
dc.identifier.citedreferenceBao M, Mao F, Zhao Z, et al. COL6A1 mutation leading to Bethlem myopathy with recurrent hematuria: a case report. BMC Neurol. 2019; 19 ( 1 ): 32.
dc.identifier.citedreferenceTurner CH, Burr DB. Experimental techniques for bone mechanics. In Cowin SC, ed. Bone mechanics handbook. Boca Raton, FL: CRC Press; 2001.
dc.identifier.citedreferenceCavalier E, Eastell R, Jorgensen NR, et al. A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism. Clin Chem Lab Med. 2019; 57 ( 10 ): 1546 - 1555.
dc.identifier.citedreferenceBen Shoham A, Rot C, Stern T, et al. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development. 2016; 143 ( 21 ): 3933 - 3943.
dc.identifier.citedreferenceMatsushita Y, Ono W, Ono N. Skeletal stem cells for bone development and repair: diversity matters. Curr Osteoporos Rep. 2020; 18 ( 3 ): 189 - 198.
dc.identifier.citedreferenceOno N, Kronenberg HM. Mesenchymal progenitor cells for the osteogenic lineage. Curr Mol Biol Rep. 2015; 1 ( 3 ): 95 - 100.
dc.identifier.citedreferenceZhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15 ( 2 ): 154 - 168.
dc.identifier.citedreferenceOwen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol. 2018; 6: 134.
dc.identifier.citedreferenceSipilä KH, Drushinin K, Rappu P, et al. Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms. J Biol Chem. 2018; 293 ( 20 ): 7645 - 7658.
dc.identifier.citedreferenceKerschnitzki M, Wagermaier W, Roschger P, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011; 173 ( 2 ): 303 - 311.
dc.identifier.citedreferencevan Oers RFM, Wang H, Bacabac RG. Osteocyte shape and mechanical loading. Curr Osteoporos Rep. 2015; 13 ( 2 ): 61 - 66.
dc.identifier.citedreferenceEsbona K, Yi Y, Saha S, et al. The presence of cyclooxygenase 2, tumor-associated macrophages, and collagen alignment as prognostic markers for invasive breast carcinoma patients. Am J Pathol. 2018; 188 ( 3 ): 559 - 573.
dc.identifier.citedreferenceHartmann C. Transcriptional networks controlling skeletal development. Curr Opin Genet Dev. 2009; 19 ( 5 ): 437 - 443.
dc.identifier.citedreferenceIolascon G, Moretti A, Toro G, Gimigliano F, Liguori S, Paoletta M. Pharmacological therapy of osteoporosis: what’s new? Clin Interv Aging. 2020; 15: 485 - 491.
dc.identifier.citedreferenceVasta JD, Raines RT. Collagen prolyl 4-hydroxylases as a therapeutic target. J Med Chem. 2018; 61 ( 23 ): 10403 - 10411.
dc.identifier.citedreferenceFriedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013; 5 ( 167 ): 167sr1.
dc.identifier.citedreferenceAgarwal S, Behring M, Kim H-G, et al. Targeting P4HA1 with a small molecule inhibitor in a colorectal cancer PDX model. Transl Oncol. 2020; 13 ( 4 ): 100754.
dc.identifier.citedreferenceSanghani NS, Haase VH. Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv Chronic Kidney Dis. 2019; 26 ( 4 ): 253 - 266.
dc.identifier.citedreferenceRappu P, Salo AM, Myllyharju J, Heino J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 2019; 63 ( 3 ): 325 - 335.
dc.identifier.citedreferenceMyllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med. 2008; 40 ( 6 ): 402 - 417.
dc.identifier.citedreferenceMyllyharju J. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004; 20 ( 1 ): 33 - 43.
dc.identifier.citedreferenceFallas JA, O’Leary LER, Hartgerink JD. Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chem Soc Rev. 2010; 39 ( 9 ): 3510 - 3527.
dc.identifier.citedreferenceGorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol. 2010; 45 ( 2 ): 106 - 124.
dc.identifier.citedreferenceJimenez S, Margaret H, Joel R. Hydroxyproline stabilizes the triple helix of chick tendon collagen. Biochem Biophys Res Commun. 1973; 52 ( 1 ): 106 - 114.
dc.identifier.citedreferenceKoski K, Anantharajan J, Kursula P, et al. Assembly of the elongated collagen prolyl 4-hydroxylase α 2 β 2 heterotetramer around a central α 2 dimer. Biochem J. 2017; 474 ( 5 ): 751 - 769.
dc.identifier.citedreferenceSalo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol. 2021; 30 ( 1 ): 38 - 49.
dc.identifier.citedreferenceHerr CQ, Hausinger RP. Amazing diversity in biochemical roles of Fe(II)/2-oxoglutarate oxygenases. Trends Biochem Sci. 2018; 43 ( 7 ): 517 - 532.
dc.identifier.citedreferenceKiriakidis S, Hoer SS, Burrows N, et al. Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney Int. 2017; 92 ( 4 ): 900 - 908.
dc.identifier.citedreferenceD’Aniello C, Cermola F, Palamidessi A, et al. Collagen prolyl hydroxylation–dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells. Cancer Res. 2019; 79 ( 13 ): 3235 - 3250.
dc.identifier.citedreferenceElia I, Rossi M, Stegen S, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019; 568 ( 7750 ): 117 - 121.
dc.identifier.citedreferenceXiong G, Stewart RL, Chen J, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018; 9 ( 1 ): 4456.
dc.identifier.citedreferenceGilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2013; 288 ( 15 ): 10819 - 10829.
dc.identifier.citedreferenceGilkes DM, Chaturvedi P, Bajpai S, et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013; 73 ( 11 ): 3285 - 3296.
dc.identifier.citedreferenceAtkinson A, Renziehausen A, Wang H, et al. Collagen prolyl hydroxylases are bifunctional growth regulators in melanoma. J Invest Dermatol. 2019; 139 ( 5 ): 1118 - 1126.
dc.identifier.citedreferenceGu X, Wang B, Zhu H, et al. Age-associated genes in human mammary gland drive human breast cancer progression. Breast Cancer Res. 2020; 22 ( 1 ): 64.
dc.identifier.citedreferenceAik W, McDonough MA, Thalhammer A, Chowdhury R, Schofield CJ. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol. 2012; 22 ( 6 ): 691 - 700.
dc.identifier.citedreferenceMyllyharju J, Kivirikko KI. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 1997; 16 ( 6 ): 1173 - 1180.
dc.identifier.citedreferenceMyllyharju J, Kivirikko KI. Identification of a novel proline-rich peptide-binding domain in prolyl 4-hydroxylase. EMBO J. 1999; 18 ( 2 ): 306 - 312.
dc.identifier.citedreferenceHelaakoski T, Vuori K, Myllylä R, Kivirikko KI, Pihlajaniemi T. Molecular cloning of the α-subunit of human prolyl 4-hydroxylase: the complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts. Proc Natl Acad Sci U S A. 1989; 86 ( 12 ): 4392 - 4396.
dc.identifier.citedreferenceJohn DC, Grant ME, Bulleid NJ. Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the β-subunit (PDI) in preventing misfolding and aggregation of the α-subunit. EMBO J. 1993; 12 ( 4 ): 1587 - 1595.
dc.identifier.citedreferenceKukkola L, Hieta R, Kivirikko KI, Myllyharju J. Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase Isoenzyme. J Biol Chem. 2003; 278 ( 48 ): 47685 - 47693.
dc.identifier.citedreferenceNokelainen M, Nissi R, Kukkola L, Helaakoski T, Myllyharju J. Characterization of the human and mouse genes for the α subunit of type II prolyl 4-hydroxylase. Identification of a previously unknown alternatively spliced exon and its expression in various tissues. Eur J Biochem. 2001; 268 ( 20 ): 5300 - 5309.
dc.identifier.citedreferencePajunen L, Jones TA, Helaakoski T, et al. Assignment of the gene coding for the α-subunit of prolyl 4-hydroxylase to human chromosome region 10q21.3-23.1. Am J Hum Genet. 1989; 45 ( 6 ): 829 - 834.
dc.identifier.citedreferenceHolster T, Pakkanen O, Soininen R, et al. Loss of assembly of the main basement membrane collagen, type IV, but not fibril-forming collagens and embryonic death in collagen prolyl 4-hydroxylase I null mice. J Biol Chem. 2007; 282 ( 4 ): 2512 - 2519.
dc.identifier.citedreferenceAro E, Salo AM, Khatri R, et al. Severe extracellular matrix abnormalities and chondrodysplasia in mice lacking collagen prolyl 4-hydroxylase isoenzyme II in combination with a reduced amount of isoenzyme I. J Biol Chem. 2015; 290 ( 27 ): 16964 - 16978.
dc.identifier.citedreferenceVan Den Diepstraten C, Papay K, Bolender Z, Brown A, Pickering JG. Cloning of a novel prolyl 4-hydroxylase subunit expressed in the fibrous cap of human atherosclerotic plaque. Circulation. 2003; 108 ( 5 ): 508 - 511.
dc.identifier.citedreferenceZou Y, Donkervoort S, Salo AM, et al. P4HA1 mutations cause a unique congenital disorder of connective tissue involving tendon, bone, muscle and the eye. Hum Mol Genet. 2017; 26 ( 12 ): 2207 - 2217.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.