Show simple item record

Synergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries

dc.contributor.authorLi, Xiang
dc.contributor.authorXu, Jialiang
dc.contributor.authorLi, Haoyu
dc.contributor.authorZhu, Hong
dc.contributor.authorGuo, Shaohua
dc.contributor.authorZhou, Haoshen
dc.date.accessioned2022-07-05T21:02:37Z
dc.date.available2023-06-05 17:02:35en
dc.date.available2022-07-05T21:02:37Z
dc.date.issued2022-05
dc.identifier.citationLi, Xiang; Xu, Jialiang; Li, Haoyu; Zhu, Hong; Guo, Shaohua; Zhou, Haoshen (2022). "Synergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries." Advanced Science 9(16): n/a-n/a.
dc.identifier.issn2198-3844
dc.identifier.issn2198-3844
dc.identifier.urihttps://hdl.handle.net/2027.42/173003
dc.description.abstractSodium-ion batteries are commonly regarded as a promising candidate in large-scale energy storage. Layered iron/manganese oxide cathodes receive extensive attentions due to the element abundance and large theoretical capacity. However, these materials usually undergo obvious degradation of electrochemical performance due to the tendency of Mn dissolution and Fe migration during continuous sodium release and uptake. Herein, a strategy of anion–cation synergetic redox is proposed to suppress the structural deterioration originated from overusing the electrochemical activity of transition-metal ions, and decreased lattice strain as well as superior electrochemical performance are realized simultaneously. Results show that the Na0.8Li0.2Fe0.2Mn0.6O2 (NLFM) electrode is highly resistant to the erosion of moisture that is distinct from the traditional Mn/Fe-based electrodes. Moreover, the NLFM electrode demonstrates solid solution behavior without phase transition during cycles. The ultra-small volume change of 0.85% is ascribed to the negligible manganese dissolution and invisible transition-metal migration. The high-stable layered structure assures superior reversible capacity of ≈165 mA h g–1, excellent rate capability, and splendid capacity retention of over 98.3% with 100 cycles. The findings deepen the understanding of the synergy between anion and cation redox and provide new insights to design the high-stable layered cathode for sodium-ion batteries.A strategy of anion–cation synergetic redox is proposed to suppress the structural deterioration of sodium-ion layered Fe/Mn-based cathodes. The electrode is of high resistance to the erosion of moisture that is distinct from the traditional electrodes. Moreover, the electrode demonstrates solid solution behavior without phase transition during cycles. The ultra-small volume change of 0.85% is ascribed to the negligible manganese dissolution and invisible Fe migration. The high-stable layered structure assures superior reversible capacity and excellent rate capability.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersodium-ion batteries
dc.subject.othersuppressed phase transition
dc.subject.otherhigh-stable layered cathodes
dc.subject.otheranion redox
dc.titleSynergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173003/1/advs3834.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173003/2/advs3834_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173003/3/advs3834-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/advs.202105280
dc.identifier.sourceAdvanced Science
dc.identifier.citedreferenceK. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
dc.identifier.citedreferenceY. Qiao, S. Guo, K. Zhu, P. Liu, X. Li, K. Jiang, C.-J. Sun, M. Chen, H. Zhou, Energy Environ. Sci. 2018, 11, 299.
dc.identifier.citedreferenceX. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu, X. Zhang, Y. Yuan, P. He, M. Ishida, H. Zhou, Adv. Mater. 2018, 30, 1705197.
dc.identifier.citedreferenceX. Li, Y. Qiao, S. Guo, K. Jiang, M. Ishida, H. Zhou, Adv. Mater. 2019, 31, 1807825.
dc.identifier.citedreferenceX. Rong, E. Hu, Y. Lu, F. Meng, C. Zhao, X. Wang, Q. Zhang, X. Yu, L. Gu, Y.-S. Hu, H. Li, X. Huang, X.-Q. Yang, C. Delmas, L. Chen, Joule 2019, 3, 503.
dc.identifier.citedreferenceB. He, P. H. Mi, A. J. Ye, S. T. Chi, Y. Jiao, L. W. Zhang, B. W. Pu, Z. Y. Zou, W. Q. Zhang, M. Avdeev, S. Adams, J. T. Zhao, S. Q. Shi, Acta Mater. 2021, 203, 116490.
dc.identifier.citedreferenceD. H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692.
dc.identifier.citedreferenceJ. Hong, W. E. Gent, P. Xiao, K. Lim, D.-H. Seo, J. Wu, P. M. Csernica, C. J. Takacs, D. Nordlund, C.-J. Sun, K. H. Stone, D. Passarello, W. Yang, D. Prendergast, G. Ceder, M. F. Toney, W. C. Chueh, Nat. Mater. 2019, 18, 256.
dc.identifier.citedreferenceM. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 2017, 9, 36463.
dc.identifier.citedreferenceA. C. Larson, R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 1994, 86.
dc.identifier.citedreferenceB. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.
dc.identifier.citedreferenceC. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 1980, 99, 81.
dc.identifier.citedreferenceM. Jiang, B. Key, Y. S. Meng, C. P. Grey, Chem. Mater. 2009, 21, 2733.
dc.identifier.citedreferenceB. Xu, C. R. Fell, M. Chi, Y. S. Meng, Energy Environ. Sci. 2011, 4, 2223.
dc.identifier.citedreferenceA. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 8694.
dc.identifier.citedreferenceC. Chen, W. Y. Huang, Y. W. Li, M. J. Zhang, K. Q. Nie, J. O. Wang, W. G. Zhao, R. Qi, C. J. Zuo, Z. B. Li, H. C. Yi, F. Pan, Nano Energy 2021, 90, 106504.
dc.identifier.citedreferenceQ. Wang, S. Mariyappan, G. Rousse, A. V. Morozov, B. Porcheron, R. Dedryvere, J. P. Wu, W. L. Yang, L. T. Zhang, M. Chakir, M. Avdeev, M. Deschamps, Y. S. Yu, J. Cabana, M. L. Doublet, A. M. Abakumov, J. M. Tarascon, Nat. Mater. 2021, 20, 353.
dc.identifier.citedreferenceC. Johnson, J. Kim, C. Lefief, N. Li, J. Vaughey, M. Thackeray, Electrochem. Commun. 2004, 6, 1085.
dc.identifier.citedreferenceE. McCalla, A. M. Abakumov, M. Saubanere, D. Foix, E. J. Berg, G. Rousse, M. L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, R. Dominko, J. M. Tarascon, Science 2015, 350, 1516.
dc.identifier.citedreferenceM. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo, J. M. Tarascon, Nat. Mater. 2015, 14, 230.
dc.identifier.citedreferenceM. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J. M. Tarascon, Nat. Mater. 2013, 12, 827.
dc.identifier.citedreferenceN. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, K. Sato, S. Komaba, Proc. Natl. Acad. Sci. 2015, 112, 7650.
dc.identifier.citedreferenceK. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684.
dc.identifier.citedreferenceL. Li, E. Lee, J. W. Freeland, T. T. Fister, M. M. Thackeray, M. K. Chan, J. Phys. Chem. Lett. 2019, 10, 806.
dc.identifier.citedreferenceJ. Lee, J. K. Papp, R. J. Clément, S. Sallis, D. H. Kwon, T. Shi, W. Yang, B. D. McCloskey, G. Ceder, Nat. Commun. 2017, 8, 981.
dc.identifier.citedreferenceM. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Chem. 2005, 15, 2257.
dc.identifier.citedreferenceJ. Roos, C. Eames, S. M. Wood, A. Whiteside, M. Saiful Islam, Phys. Chem. Chem. Phys. 2015, 17, 22259.
dc.identifier.citedreferenceS. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Nat. Commun. 2017, 8, 135.
dc.identifier.citedreferenceN. Yabuuchi, H. Yoshida, S. Komaba, Electrochemistry 2012, 80, 716.
dc.identifier.citedreferenceS. Komaba, C. Takei, T. Nakayama, A. Ogata, N. Yabuuchi, Electrochem. Commun. 2010, 12, 355.
dc.identifier.citedreferenceS. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang, M. Chen, M. Ishida, H. Zhou, Energy Environ. Sci. 2015, 8, 1237.
dc.identifier.citedreferenceS. Kikkawa, S. Miyazaki, M. Koizumi, J. Solid State Chem. 1986, 62, 35.
dc.identifier.citedreferenceA. Caballero, L. Hernan, J. Morales, L. Sanchez, J. S. Pena, M. Aranda, J. Mater. Chem. 2002, 12, 1142.
dc.identifier.citedreferenceC. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3, 165.
dc.identifier.citedreferenceN. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512.
dc.identifier.citedreferenceS. Guo, P. Liu, Y. Sun, K. Zhu, J. Yi, M. Chen, M. Ishida, H. Zhou, Angew. Chem., Int. Ed. 2015, 54, 11701.
dc.identifier.citedreferenceS. Guo, Y. Sun, J. Yi, K. Zhu, P. Liu, Y. Zhu, G. Zhu, M. Chen, M. Ishida, H. Zhou, NPG Asia Mater 2016, 8, e266.
dc.identifier.citedreferenceN. Yabuuchi, S. Komaba, Sci. Technol. Adv. Mater. 2014, 15, 043501.
dc.identifier.citedreferenceS. Xu, J. Wu, E. Hu, Q. Li, J. Zhang, Y. Wang, E. Stavitski, L. Jiang, X. Rong, X. Yu, J. Mater. Chem. A 2018, 6, 20795.
dc.identifier.citedreferenceP. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem., Int. Ed. 2016, 55, 7445.
dc.identifier.citedreferenceV. Duffort, E. Talaie, R. Black, L. F. Nazar, Chem. Mater. 2015, 27, 2515.
dc.identifier.citedreferenceS. H. Guo, Y. Sun, P. Liu, J. Yi, P. He, X. Y. Zhang, Y. B. Zhu, R. Senga, K. Suenaga, M. W. Chen, H. S. Zhou, Sci. Bull. 2018, 63, 376.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.