A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars
dc.contributor.author | DiBraccio, Gina A. | |
dc.contributor.author | Romanelli, Norberto | |
dc.contributor.author | Bowers, Charles F. | |
dc.contributor.author | Gruesbeck, Jacob R. | |
dc.contributor.author | Halekas, Jasper S. | |
dc.contributor.author | Ruhunusiri, Suranga | |
dc.contributor.author | Weber, Tristan | |
dc.contributor.author | Espley, Jared R. | |
dc.contributor.author | Xu, Shaosui | |
dc.contributor.author | Luhmann, Janet G. | |
dc.contributor.author | Harada, Yuki | |
dc.contributor.author | Dubinin, Eduard | |
dc.contributor.author | Poh, Gang Kai | |
dc.contributor.author | Brain, David A. | |
dc.contributor.author | Curry, Shannon M. | |
dc.date.accessioned | 2022-07-05T21:03:05Z | |
dc.date.available | 2023-07-05 17:03:04 | en |
dc.date.available | 2022-07-05T21:03:05Z | |
dc.date.issued | 2022-06-28 | |
dc.identifier.citation | DiBraccio, Gina A.; Romanelli, Norberto; Bowers, Charles F.; Gruesbeck, Jacob R.; Halekas, Jasper S.; Ruhunusiri, Suranga; Weber, Tristan; Espley, Jared R.; Xu, Shaosui; Luhmann, Janet G.; Harada, Yuki; Dubinin, Eduard; Poh, Gang Kai; Brain, David A.; Curry, Shannon M. (2022). "A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars." Geophysical Research Letters 49(12): n/a-n/a. | |
dc.identifier.issn | 0094-8276 | |
dc.identifier.issn | 1944-8007 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/173012 | |
dc.description.abstract | The Martian magnetotail exhibits a highly twisted configuration, shifting in response to changes in polarity of the interplanetary magnetic field’s (IMF) dawn-dusk (BY) component. Here, we analyze ∼6000 MAVEN orbits to quantify the degree of magnetotail twisting (θTwist) and assess variations as a function of (a) strong planetary crustal field location, (b) Mars season, and (c) downtail distance. The results demonstrate that θTwist is larger for a duskward (+BY) IMF orientation a majority of the time. This preference is likely due to the local orientation of crustal magnetic fields across the surface of Mars, where a +BY IMF orientation presents ideal conditions for magnetic reconnection to occur. Additionally, we observe an increase in θTwist with downtail distance, similar to Earth’s magnetotail. These findings suggest that coupling between the IMF and moderate-to-weak crustal field regions may play a major role in determining the magnetospheric structure at Mars.Plain Language SummaryMAVEN magnetic field data are analyzed to understand factors that may influence the magnetotail structure at Mars. The Martian magnetotail lobes are observed to be twisted and the degree of this twist can vary. In this work, we calculate the degree of tail twist and monitor how it changes. To understand how the twist changes, we examine these variations as a function of Mars crustal field location, Mars season, and downtail distance away from Mars.Key PointsMars’ magnetotail can be twisted up to 60 deg away from its expected location based on interplanetary magnetic field (IMF) draping, much greater than Earth’s tail twistMAVEN observations show that Mars’ tail exhibits larger twisting for +BY IMF orientation, compared to −BY IMFMars crustal magnetic fields may play a significant role in shaping the twisted structure of the Martian magnetotail | |
dc.publisher | Astrophys Journal | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | magnetic reconnection | |
dc.subject.other | Mars | |
dc.subject.other | magnetotail | |
dc.subject.other | magnetosphere | |
dc.title | A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173012/1/grl64242_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173012/2/grl64242.pdf | |
dc.identifier.doi | 10.1029/2022GL098007 | |
dc.identifier.source | Geophysical Research Letters | |
dc.identifier.citedreference | Modolo, R., Chanteur, G. M., & Dubinin, E. ( 2012 ). Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF. Geophysical Research Letters, 39. https://doi.org/10.1029/2011GL049895 | |
dc.identifier.citedreference | Harada, Y., Halekas, J. S., Xu, S., DiBraccio, G. A., Ruhunusiri, S., Hara, T., et al. ( 2020 ). Ion jets within current sheets in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2020JA028576 | |
dc.identifier.citedreference | Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The mars atmosphere and volatile evolutioN (MAVEN) mission. Space Science Reviews, 195, 3 – 48. https://doi.org/10.1007/s11214-015-0139-x | |
dc.identifier.citedreference | Kaymaz, Z., Siscoe, G. L., Luhmann, J. G., Lepping, R. P., & Russell, C. T. ( 1994 ). Interplanetary magnetic-field control of magnetotail magnetic-field geometry: Imp-8 observations. Journal of Geophysical Research: Space Physics, 99, 11113. https://doi.org/10.1029/94JA00300 | |
dc.identifier.citedreference | Khurana, K. K., Walker, R. J., & Ogino, T. ( 1996 ). Magnetospheric convection in the presence of interplanetary magnetic field By: A conceptual model and simulations. Journal of Geophysical Research, 101, 4907 – 4916. https://doi.org/10.1029/95JA03673 | |
dc.identifier.citedreference | Luhmann, J. G., Dong, D., Ma, Y., Curry, S. M., Mitchell, D., Espley, J., et al. ( 2015 ). Implications of MAVEN Mars near-wake measurements and models. Geophysical Research Letters, 42, 9087 – 9094. https://doi.org/10.1002/2015GL066122 | |
dc.identifier.citedreference | Lundin, R. ( 2011 ). Ion acceleration and outflow from Mars and Venus: An Overview. Space Science Reviews, 162, 309 – 334. https://doi.org/10.1007/s11214-011-9811-y | |
dc.identifier.citedreference | Ma, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three-dimensional, multispecies, high spatial resolution MHD studies of the solarwind interaction with Mars. Journal of Geophysical Research, 109. https://doi.org/10.1029/2003JA010367 | |
dc.identifier.citedreference | Ma, Y., Russell, C. T., Toth, G., Chen, Y., Nagy, A. F., Harada, Y., et al. ( 2018 ). Reconnection in the Martian Magnetotail: Hall-MHD with embedded particle-in-cell simulations. Journal of Geophysical Research: Space Physics, 123, 3742 – 3763. https://doi.org/10.1029/2017JA024729 | |
dc.identifier.citedreference | Ma, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., et al. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218 | |
dc.identifier.citedreference | Marquette, M. L., Lillis, R. J., Halekas, J. S., Luhmann, J. L., Gruesbeck, J. R., & Espley, J. R. ( 2018 ). Autocorrelation study of solar wind plasma and IMF properties as measured by the MAVEN spacecraft. Journal of Geophysical Research: Space Physics, 123, 2493 – 2512. https://doi.org/10.1002/2018JA025209 | |
dc.identifier.citedreference | Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., et al. ( 2001 ). Probing Mars’crustal magnetic field and ionosphere with the MGS Electron Reflectometer. Journal of Geophysical Research, 106, 23419 – 23427. https://doi.org/10.1029/2000JE001435 | |
dc.identifier.citedreference | Owen, C. J., Slavin, J. A., Richardson, I. G., Murphy, N., & Hynds, R. J. ( 1995 ). Average motion, structure and orientation of the distant magnetotail determined from remote sensing of the edge of the plasma sheet boundary layer with E > 35 keV ions. Journal of Geophysical Research, 100, 185. https://doi.org/10.1029/94JA02417 | |
dc.identifier.citedreference | Parker, E. N. ( 1958 ). Dynamics of the interplanetary gas and magnetic fields. Astrophys Journal. https://doi.org/10.1086/146579 | |
dc.identifier.citedreference | Pitknen, T., Kullen, A., Cai, L., Park, J.-S., Vanhamäki, H., Hamrin, M., et al. ( 2021 ). Asymmetry in the Earth’s magnetotail neutral sheet rotation due to IMF by sign? Geoscience Letters, 8. https://doi.org/10.1186/s40562-020-00171-7 | |
dc.identifier.citedreference | Ramstad, R., Brain, D. A., Dong, Y., Espley, J. R., Halekas, J. S., & Jakosky, B. ( 2020 ). The global current systems of the Martian induced magnetosphere. Nature Astronomy. https://doi.org/10.1038/s41550-020-1099-y | |
dc.identifier.citedreference | Romanelli, N., Bertucci, C., Gomez, D., & Mazelle, C. ( 2015 ). Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from Mars Global Surveyor. Journal of Geophysical Research: Space Physics, 120, 7737 – 7747. https://doi.org/10.1002/2015JA021359 | |
dc.identifier.citedreference | Romanelli, N., DiBraccio, G., Halekas, J., Dubinin, E., Gruesbeck, J., Espley, J., et al. ( 2020 ). Variability of the solar wind flow asymmetry in the Martian magnetosheath observed by MAVEN. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090793 | |
dc.identifier.citedreference | Romanelli, N., Modolo, R., Leblanc, F., Chaufray, J.-Y., Hess, S., Brain, D., et al. ( 2018 ). Effects of the crustal magnetic fields and changes in the IMF orientation on the magnetosphere of Mars: MAVEN observations and LatHyS results. Journal of Geophysical Research: Space Physics, 123, 5315 – 5333. https://doi.org/10.1029/2017JA025155 | |
dc.identifier.citedreference | Ruhunusiri, S., Halekas, J. S., Espley, J. R., Eparvier, F. G., Brain, D. A., Mazelle, C., et al. ( 2018 ). An artificial neural network for inferring solar wind proxies at Mars. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL079282 | |
dc.identifier.citedreference | Sibeck, D. G., Siscoe, G. L., Slavin, J. A., Smith, E. J., Tsurutani, B. T., & Lepping, R. P. ( 1985 ). The distant magnetotail’s response to a strong interplanetary magnetic field By: Twisting, flattening, and field line bending. Journal of Geophysical Research, 90, 4011. https://doi.org/10.1029/JA090iA05p04011 | |
dc.identifier.citedreference | Sonnerup, B. U. Ö. ( 1974 ). Magnetopause reconnection rate. Journal of Geophysical Research. https://doi.org/10.1029/JA079i010p01546 | |
dc.identifier.citedreference | Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J. P., Haaland, S., & Milan, S. E. ( 2015 ). How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research: Space Physics, 120, 9368 – 9384. https://doi.org/10.1002/2015JA021579 | |
dc.identifier.citedreference | Ulusen, D., Luhmann, J. G., Ma, Y., & Brain, D. A. ( 2016 ). Solar control of the Martian magnetic topology: Implications from model-data comparisons. Planetary and Space Science, 128, 1 – 13. https://doi.org/10.1016/j.pss.2016.01.007 | |
dc.identifier.citedreference | Vignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., et al. ( 2000 ). The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment on-board Mars global surveyor. Geophysical Research Letters, 27, 49 – 52. https://doi.org/10.1029/1999GL010703 | |
dc.identifier.citedreference | Weber, T., Brain, D., Mitchell, D., Xu, S., Connerney, J., & Halekas, J. ( 2017 ). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. Journal of Geophysical Research: Space Physics, 122, 9777 – 9789. https://doi.org/10.1002/2017JA024491 | |
dc.identifier.citedreference | Weber, T., Brain, D., Mitchell, D., Xu, S., Espley, J., Halekas, J., et al. ( 2019 ). The influence of solar wind pressure on Martian crustal magnetic field topology. Geophysical Research Letters, 46, 2347 – 2354. https://doi.org/10.1029/2019GL081913 | |
dc.identifier.citedreference | Weber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Halekas, J., et al. ( 2020 ). The influence of interplanetary magnetic field direction on Martian crustal magnetic field topology. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL087757 | |
dc.identifier.citedreference | Xiao, S., Zhang, T., Ge, Y., Wang, G., Baumjohann, W., & Nakamura, R. ( 2016 ). A statistical study on the shape and position of the magnetotail neutral sheet. Annales de Geophysique, 34, 303 – 311. https://doi.org/10.5194/angeo-34-303-2016 | |
dc.identifier.citedreference | Xu, S., Mitchell, D., Liemohn, M., Dong, C., Bougher, S., Fillingim, M., et al. ( 2016 ). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 43, 8876 – 8884. https://doi.org/10.1002/2016GL070527 | |
dc.identifier.citedreference | Xu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et al. ( 2017 ). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122, 1831 – 1852. https://doi.org/10.1002/2016JA023467 | |
dc.identifier.citedreference | Xu, S., Mitchell, D., Luhmann, J., Ma, Y., Fang, X., Harada, Y., et al. ( 2017 ). High-altitude closed magnetic loops at Mars observed by MAVEN. Geophysical Research Letters, 44, 229 – 11. https://doi.org/10.1002/2017GL075831 | |
dc.identifier.citedreference | Xu, S., Mitchell, D. L., Weber, T., Brain, D. A., Luhmann, J. G., Dong, C., et al. ( 2020 ). Characterizing Mars’s magnetotail topology with respect to the upstream interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2019JA027755 | |
dc.identifier.citedreference | Xu, S., Weber, T., Mitchell, D. L., Brain, D. A., Mazelle, C., DiBraccio, G. A., & Espley, J. ( 2019 ). A technique to infer magnetic topology at Mars and its application to the terminator region. Journal of Geophysical Research: Space Physics, 124, 1823 – 1842. https://doi.org/10.1029/2018JA026366 | |
dc.identifier.citedreference | Yeroshenko, Y., Riedler, W., Schwingenschuh, K., Luhmann, J. G., Ong, M., & Russell, C. T. ( 1990 ). The Magnetotail of Mars: Phobos Observations. Geophysical Research Letters. https://doi.org/10.1029/GL017i006p00885 | |
dc.identifier.citedreference | Acuña, M. H., Connerney, J. E. P., Ness, Lin, R. P., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790 – 793. https://doi.org/10.1126/science.284.5415.790 | |
dc.identifier.citedreference | Acuña, M. H., Connerney, J. E. P., Wasilewski, P. A., Lin, R. P., Anderson, K. A., Carlson, C. W., et al. ( 1998 ). Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science, 279 ( 5357 ), 1676 – 1680. | |
dc.identifier.citedreference | Artemyev, A. V., Angelopoulos, V., Halekas, J. S., Runov, A., Zelenyi, L. M., & McFadden, J. P. ( 2017 ). Mars’s magnetotail: Nature’s current sheet laboratory. Journal of Geophysical Research: Space Physics, 122, 5404 – 5417. https://doi.org/10.1002/2017JA024078 | |
dc.identifier.citedreference | Bowers, C. F., Slavin, J. A., DiBraccio, G. A., Poh, G., Hara, T., Xu, S., & Brain, D. A. ( 2021 ). MAVEN survey of magnetic flux rope properties in the Martian ionosphere: Comparison with three types of formation mechanisms. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL093296 | |
dc.identifier.citedreference | Brain, D., Barabash, S., Boesswetter, A., Bougher, S., Brecht, S., Chanteur, G., et al. ( 2010 ). A comparison of global models for the solar wind interaction with Mars. Icarus, 206, 139 – 151. https://doi.org/10.1016/j.icarus.2009.06.030 | |
dc.identifier.citedreference | Brain, D. A., Bagenal, F., Acuna, M. H., & Connerney, J. E. P. ( 2003 ). Martian magnetic morphology: Contributions from the solar wind and crust. Journal of Geophysical Research, 108. https://doi.org/10.1029/2002JA009482 | |
dc.identifier.citedreference | Brain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., Halekas, J. S., & Phan, T. D. ( 2010 ). Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL043916 | |
dc.identifier.citedreference | Brain, D. A., Mitchell, D., & Halekas, J. ( 2006 ). The magnetic eld draping direction at Mars from April 1999 through August 2004. https://doi.org/10.1016/icarus.2005.09.023 | |
dc.identifier.citedreference | Briggs, J. A., Brain, D. A., Cartwright, M. L., Eastwood, J. P., & Halekas, J. S. ( 2011 ). A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 59, 1498 – 1505. https://doi.org/10.1016/j.pss.2011.06.010 | |
dc.identifier.citedreference | Connerney, J. E. P., Acuna, M. H., Ness, N. F., Kletetschka, G., Mitchell, D. L., Lin, R. P., & Reme, H. ( 2005 ). Tectonic implications of Mars crustal magnetism. P Natl Acad Sci USA, 102 ( 42 ), 14970 – 14975. https://doi.org/10.1073/pnas.0507469102 | |
dc.identifier.citedreference | Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN Magnetic Field Investigation. Space Science Reviews, 195 ( 1–4 ), 257 – 291. https://doi.org/10.1007/s11214-015-0169-4 | |
dc.identifier.citedreference | Cowley, S. W. H. ( 1981 ). Magnetospheric asymmetries associated with the Y-component of the IMF. Planetary and Space Science, 29, 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0 | |
dc.identifier.citedreference | Crider, D. H., Brain, D. A., Acuna, M. H., Vignes, D., Mazelle, C., & Bertucci, C. ( 2004 ). Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Science Reviews, 111 ( 1–2 ), 203 – 221. https://doi.org/10.1007/978-0-306-48604-3_5 | |
dc.identifier.citedreference | DiBraccio, G. A., Dann, J., Espley, J. R., Gruesbeck, J. R., Soobiah, Y., Connerney, J. E. P., et al. ( 2017 ). MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 122, 4308 – 4324. https://doi.org/10.1002/2016JA023488 | |
dc.identifier.citedreference | DiBraccio, G. A., Espley, J. R., Gruesbeck, J. R., Connerney, J. E. P., Brain, D. A., Halekas, J. S., et al. ( 2015 ). Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 42, 8828 – 8837. https://doi.org/10.1002/2015GL065248 | |
dc.identifier.citedreference | DiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S., Mitchell, D. L., et al. ( 2018 ). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophysical Research Letters, 45, 4559 – 4568. https://doi.org/10.1029/2018GL077251 | |
dc.identifier.citedreference | Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., et al. ( 2017 ). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 4009 – 4022. https://doi.org/10.1002/2016JA023517 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., & Vaisberg, O. ( 2011 ). Ion energization and escape on Mars and Venus. Space Science Reviews, 173 – 211. https://doi.org/10.1007/978-1-4614-3290-6_6 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Pätzold, M., Halekas, J. S., Mcfadden, J., Connerney, J. E. P., et al. ( 2018 ). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophysical Research Letters, 45, 2574 – 2579. https://doi.org/10.1002/2017GL076813 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., et al. ( 2017 ). The eect of solar wind variations on the escape of oxygen ions from Mars through dierent channels: MAVEN observations. Journal of Geophysical Research: Space Physics, 122. https://doi.org/10.1002/2017JA024741 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Pätzold, M., Tellmann, S., Woch, J., McFadden, J., & Zelenyi, L. ( 2021 ). Bursty ion escape fluxes at Mars. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2020JA028920 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Zhang, T. L., Woch, J., & Wei, Y. ( 2014b ). Magnetic elds in the Mars ionosphere of a noncrustal origin: Magnetization features. Geophysical Research Letters, 41, 6329 – 6334. https://doi.org/10.1002/2014GL061453 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Zhang, T. L., Woch, J., & Wei, Y. ( 2014a ). Magnetic elds in the Venus ionosphere: Dependence on the IMF direction: Venus express observations. Journal of Geophysical Research: Space Physics, 119, 7587 – 7600. https://doi.org/10.1002/2014JA020195 | |
dc.identifier.citedreference | Dubinin, E., Israelevich, P. L., & Podgomy, I. M. ( 1980 ). Combined magnetosphere. Cosmic Research, 18 ( 470 ). https://doi.org/10.1016/0008-6223(80)90007-x | |
dc.identifier.citedreference | Dubinin, E., Lundin, R., Norberg, O., & Pissarenko, N. ( 1993 ). Ion-Acceleration in the Martian Tail: Phobos Observations. Journal of Geophysical Research: Space Physics. https://doi.org/10.1029/92JA02233 | |
dc.identifier.citedreference | Dubinin, E., Modolo, R., Fraenz, M., Pätzold, M., Woch, J., Chai, L., et al. ( 2019 ). The induced magnetosphere of Mars: Asymmetrical topology of the magnetic field lines. Geophysical Research Letters, 46, 12722 – 12730. https://doi.org/10.1029/2019GL084387 | |
dc.identifier.citedreference | Eastwood, J. P., Brain, D. A., Halekas, J. S., Drake, J. F., & Phan, T. D., ( 2008 ). Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 35. https://doi.org/10.1029/2007GL032289 | |
dc.identifier.citedreference | Eastwood, J. P., Videira, J. J. H., Brain, D. A., & Halekas, J. S. ( 2012 ). A chain of magnetic flux ropes in the magnetotail of Mars. Geophysical Research Letters, 39. https://doi.org/10.1029/2011GL050444 | |
dc.identifier.citedreference | Grigorenko, E. E., Shuvalov, S. D., Malova, H. V., Dubinin, E., Popov, V. Y., Zelenyi, L. M., et al. ( 2017 ). Imprints of quasi-adiabatic ion dynamics on the current sheet structures observed in the Martian magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 122, 176 – 10. https://doi.org/10.1002/2017JA024216 | |
dc.identifier.citedreference | Grigorenko, E. E., Zelenyi, L. M., DiBraccio, G. A., Ermakov, V. N., Shuvalov, S. D., Malova, H. V., et al. ( 2019 ). Thin current sheets of sub-ion scales observed by MAVEN in the Martian magnetotail. Geophysical Research Letters, 46, 6214 – 6222. https://doi.org/10.1029/2019GL082709 | |
dc.identifier.citedreference | Halekas, J. S., Brain, D. A., Lillis, R. J., Fillingim, M. O., Mitchell, D. L., & Lin, R. P. ( 2006 ). Current sheets at low altitudes in the Martian magnetotail. Geophysical Research Letters, 33. https://doi.org/10.1029/2006GL026229 | |
dc.identifier.citedreference | Halekas, J. S., Brain, D. A., Ruhunusiri, S., McFadden, J. P., Mitchell, D. L., Mazelle, C., et al. ( 2016 ). Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 43, 1426 – 1434. https://doi.org/10.1002/2016GL067752 | |
dc.identifier.citedreference | Halekas, J. S., Eastwood, J. P., Brain, D. A., Phan, T. D., Oieroset, M., & Lin, R. P. ( 2009 ). In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters. Journal of Geophysical Research: Space Physics, 114. https://doi.org/10.1029/2009JA014544 | |
dc.identifier.citedreference | Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. ( 2017 ). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122, 547 – 578. https://doi.org/10.1002/2016JA023167 | |
dc.identifier.citedreference | Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. ( 2015 ). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews. https://doi.org/10.1007/s11214-013-0029-z | |
dc.identifier.citedreference | Hara, T., Harada, Y., Mitchell, D. L., DiBraccio, G. A., Espley, J. R., Brain, D. A., et al. ( 2017 ). On the origins of magnetic flux ropes in near-Mars magnetotail current sheets. Geophysical Research Letters, 44, 7653 – 7662. https://doi.org/10.1002/2017gl073754 | |
dc.identifier.citedreference | Hara, T., Mitchell, D. L., McFadden, J. P., Seki, K., Brain, D. A., Halekas, J. S., et al. ( 2015 ). Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 42, 8933 – 8941. https://doi.org/10.1002/2015GL065720 | |
dc.identifier.citedreference | Hara, T., Seki, K., Hasegawa, H., Brain, D. A., Matsunaga, K., Saito, M. H., & Shiota, D. ( 2014 ). Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction. Journal of Geophysical Research: Space Physics, 119, 7947 – 7962. https://doi.org/10.1002/2014JA019943 | |
dc.identifier.citedreference | Harada, Y., Halekas, J. S., McFadden, J. P., Espley, J., DiBraccio, G. A., Mitchell, D. L., et al. ( 2017 ). Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 122, 5114 – 5131. https://doi.org/10.1002/2017ja023952 | |
dc.identifier.citedreference | Harada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., et al. ( 2015 ). Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophysical Research Letters, 42 ( 21 ), 8838 – 8845. https://doi.org/10.1002/2015gl065004 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.