Show simple item record

A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars

dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorRomanelli, Norberto
dc.contributor.authorBowers, Charles F.
dc.contributor.authorGruesbeck, Jacob R.
dc.contributor.authorHalekas, Jasper S.
dc.contributor.authorRuhunusiri, Suranga
dc.contributor.authorWeber, Tristan
dc.contributor.authorEspley, Jared R.
dc.contributor.authorXu, Shaosui
dc.contributor.authorLuhmann, Janet G.
dc.contributor.authorHarada, Yuki
dc.contributor.authorDubinin, Eduard
dc.contributor.authorPoh, Gang Kai
dc.contributor.authorBrain, David A.
dc.contributor.authorCurry, Shannon M.
dc.date.accessioned2022-07-05T21:03:05Z
dc.date.available2023-07-05 17:03:04en
dc.date.available2022-07-05T21:03:05Z
dc.date.issued2022-06-28
dc.identifier.citationDiBraccio, Gina A.; Romanelli, Norberto; Bowers, Charles F.; Gruesbeck, Jacob R.; Halekas, Jasper S.; Ruhunusiri, Suranga; Weber, Tristan; Espley, Jared R.; Xu, Shaosui; Luhmann, Janet G.; Harada, Yuki; Dubinin, Eduard; Poh, Gang Kai; Brain, David A.; Curry, Shannon M. (2022). "A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars." Geophysical Research Letters 49(12): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/173012
dc.description.abstractThe Martian magnetotail exhibits a highly twisted configuration, shifting in response to changes in polarity of the interplanetary magnetic field’s (IMF) dawn-dusk (BY) component. Here, we analyze ∼6000 MAVEN orbits to quantify the degree of magnetotail twisting (θTwist) and assess variations as a function of (a) strong planetary crustal field location, (b) Mars season, and (c) downtail distance. The results demonstrate that θTwist is larger for a duskward (+BY) IMF orientation a majority of the time. This preference is likely due to the local orientation of crustal magnetic fields across the surface of Mars, where a +BY IMF orientation presents ideal conditions for magnetic reconnection to occur. Additionally, we observe an increase in θTwist with downtail distance, similar to Earth’s magnetotail. These findings suggest that coupling between the IMF and moderate-to-weak crustal field regions may play a major role in determining the magnetospheric structure at Mars.Plain Language SummaryMAVEN magnetic field data are analyzed to understand factors that may influence the magnetotail structure at Mars. The Martian magnetotail lobes are observed to be twisted and the degree of this twist can vary. In this work, we calculate the degree of tail twist and monitor how it changes. To understand how the twist changes, we examine these variations as a function of Mars crustal field location, Mars season, and downtail distance away from Mars.Key PointsMars’ magnetotail can be twisted up to 60 deg away from its expected location based on interplanetary magnetic field (IMF) draping, much greater than Earth’s tail twistMAVEN observations show that Mars’ tail exhibits larger twisting for +BY IMF orientation, compared to −BY IMFMars crustal magnetic fields may play a significant role in shaping the twisted structure of the Martian magnetotail
dc.publisherAstrophys Journal
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetic reconnection
dc.subject.otherMars
dc.subject.othermagnetotail
dc.subject.othermagnetosphere
dc.titleA Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173012/1/grl64242_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173012/2/grl64242.pdf
dc.identifier.doi10.1029/2022GL098007
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceModolo, R., Chanteur, G. M., & Dubinin, E. ( 2012 ). Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF. Geophysical Research Letters, 39. https://doi.org/10.1029/2011GL049895
dc.identifier.citedreferenceHarada, Y., Halekas, J. S., Xu, S., DiBraccio, G. A., Ruhunusiri, S., Hara, T., et al. ( 2020 ). Ion jets within current sheets in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2020JA028576
dc.identifier.citedreferenceJakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The mars atmosphere and volatile evolutioN (MAVEN) mission. Space Science Reviews, 195, 3 – 48. https://doi.org/10.1007/s11214-015-0139-x
dc.identifier.citedreferenceKaymaz, Z., Siscoe, G. L., Luhmann, J. G., Lepping, R. P., & Russell, C. T. ( 1994 ). Interplanetary magnetic-field control of magnetotail magnetic-field geometry: Imp-8 observations. Journal of Geophysical Research: Space Physics, 99, 11113. https://doi.org/10.1029/94JA00300
dc.identifier.citedreferenceKhurana, K. K., Walker, R. J., & Ogino, T. ( 1996 ). Magnetospheric convection in the presence of interplanetary magnetic field By: A conceptual model and simulations. Journal of Geophysical Research, 101, 4907 – 4916. https://doi.org/10.1029/95JA03673
dc.identifier.citedreferenceLuhmann, J. G., Dong, D., Ma, Y., Curry, S. M., Mitchell, D., Espley, J., et al. ( 2015 ). Implications of MAVEN Mars near-wake measurements and models. Geophysical Research Letters, 42, 9087 – 9094. https://doi.org/10.1002/2015GL066122
dc.identifier.citedreferenceLundin, R. ( 2011 ). Ion acceleration and outflow from Mars and Venus: An Overview. Space Science Reviews, 162, 309 – 334. https://doi.org/10.1007/s11214-011-9811-y
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three-dimensional, multispecies, high spatial resolution MHD studies of the solarwind interaction with Mars. Journal of Geophysical Research, 109. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceMa, Y., Russell, C. T., Toth, G., Chen, Y., Nagy, A. F., Harada, Y., et al. ( 2018 ). Reconnection in the Martian Magnetotail: Hall-MHD with embedded particle-in-cell simulations. Journal of Geophysical Research: Space Physics, 123, 3742 – 3763. https://doi.org/10.1029/2017JA024729
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., et al. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218
dc.identifier.citedreferenceMarquette, M. L., Lillis, R. J., Halekas, J. S., Luhmann, J. L., Gruesbeck, J. R., & Espley, J. R. ( 2018 ). Autocorrelation study of solar wind plasma and IMF properties as measured by the MAVEN spacecraft. Journal of Geophysical Research: Space Physics, 123, 2493 – 2512. https://doi.org/10.1002/2018JA025209
dc.identifier.citedreferenceMitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., et al. ( 2001 ). Probing Mars’crustal magnetic field and ionosphere with the MGS Electron Reflectometer. Journal of Geophysical Research, 106, 23419 – 23427. https://doi.org/10.1029/2000JE001435
dc.identifier.citedreferenceOwen, C. J., Slavin, J. A., Richardson, I. G., Murphy, N., & Hynds, R. J. ( 1995 ). Average motion, structure and orientation of the distant magnetotail determined from remote sensing of the edge of the plasma sheet boundary layer with E > 35 keV ions. Journal of Geophysical Research, 100, 185. https://doi.org/10.1029/94JA02417
dc.identifier.citedreferenceParker, E. N. ( 1958 ). Dynamics of the interplanetary gas and magnetic fields. Astrophys Journal. https://doi.org/10.1086/146579
dc.identifier.citedreferencePitknen, T., Kullen, A., Cai, L., Park, J.-S., Vanhamäki, H., Hamrin, M., et al. ( 2021 ). Asymmetry in the Earth’s magnetotail neutral sheet rotation due to IMF by sign? Geoscience Letters, 8. https://doi.org/10.1186/s40562-020-00171-7
dc.identifier.citedreferenceRamstad, R., Brain, D. A., Dong, Y., Espley, J. R., Halekas, J. S., & Jakosky, B. ( 2020 ). The global current systems of the Martian induced magnetosphere. Nature Astronomy. https://doi.org/10.1038/s41550-020-1099-y
dc.identifier.citedreferenceRomanelli, N., Bertucci, C., Gomez, D., & Mazelle, C. ( 2015 ). Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from Mars Global Surveyor. Journal of Geophysical Research: Space Physics, 120, 7737 – 7747. https://doi.org/10.1002/2015JA021359
dc.identifier.citedreferenceRomanelli, N., DiBraccio, G., Halekas, J., Dubinin, E., Gruesbeck, J., Espley, J., et al. ( 2020 ). Variability of the solar wind flow asymmetry in the Martian magnetosheath observed by MAVEN. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090793
dc.identifier.citedreferenceRomanelli, N., Modolo, R., Leblanc, F., Chaufray, J.-Y., Hess, S., Brain, D., et al. ( 2018 ). Effects of the crustal magnetic fields and changes in the IMF orientation on the magnetosphere of Mars: MAVEN observations and LatHyS results. Journal of Geophysical Research: Space Physics, 123, 5315 – 5333. https://doi.org/10.1029/2017JA025155
dc.identifier.citedreferenceRuhunusiri, S., Halekas, J. S., Espley, J. R., Eparvier, F. G., Brain, D. A., Mazelle, C., et al. ( 2018 ). An artificial neural network for inferring solar wind proxies at Mars. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL079282
dc.identifier.citedreferenceSibeck, D. G., Siscoe, G. L., Slavin, J. A., Smith, E. J., Tsurutani, B. T., & Lepping, R. P. ( 1985 ). The distant magnetotail’s response to a strong interplanetary magnetic field By: Twisting, flattening, and field line bending. Journal of Geophysical Research, 90, 4011. https://doi.org/10.1029/JA090iA05p04011
dc.identifier.citedreferenceSonnerup, B. U. Ö. ( 1974 ). Magnetopause reconnection rate. Journal of Geophysical Research. https://doi.org/10.1029/JA079i010p01546
dc.identifier.citedreferenceTenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J. P., Haaland, S., & Milan, S. E. ( 2015 ). How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research: Space Physics, 120, 9368 – 9384. https://doi.org/10.1002/2015JA021579
dc.identifier.citedreferenceUlusen, D., Luhmann, J. G., Ma, Y., & Brain, D. A. ( 2016 ). Solar control of the Martian magnetic topology: Implications from model-data comparisons. Planetary and Space Science, 128, 1 – 13. https://doi.org/10.1016/j.pss.2016.01.007
dc.identifier.citedreferenceVignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., et al. ( 2000 ). The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment on-board Mars global surveyor. Geophysical Research Letters, 27, 49 – 52. https://doi.org/10.1029/1999GL010703
dc.identifier.citedreferenceWeber, T., Brain, D., Mitchell, D., Xu, S., Connerney, J., & Halekas, J. ( 2017 ). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. Journal of Geophysical Research: Space Physics, 122, 9777 – 9789. https://doi.org/10.1002/2017JA024491
dc.identifier.citedreferenceWeber, T., Brain, D., Mitchell, D., Xu, S., Espley, J., Halekas, J., et al. ( 2019 ). The influence of solar wind pressure on Martian crustal magnetic field topology. Geophysical Research Letters, 46, 2347 – 2354. https://doi.org/10.1029/2019GL081913
dc.identifier.citedreferenceWeber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Halekas, J., et al. ( 2020 ). The influence of interplanetary magnetic field direction on Martian crustal magnetic field topology. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL087757
dc.identifier.citedreferenceXiao, S., Zhang, T., Ge, Y., Wang, G., Baumjohann, W., & Nakamura, R. ( 2016 ). A statistical study on the shape and position of the magnetotail neutral sheet. Annales de Geophysique, 34, 303 – 311. https://doi.org/10.5194/angeo-34-303-2016
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Dong, C., Bougher, S., Fillingim, M., et al. ( 2016 ). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 43, 8876 – 8884. https://doi.org/10.1002/2016GL070527
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et al. ( 2017 ). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122, 1831 – 1852. https://doi.org/10.1002/2016JA023467
dc.identifier.citedreferenceXu, S., Mitchell, D., Luhmann, J., Ma, Y., Fang, X., Harada, Y., et al. ( 2017 ). High-altitude closed magnetic loops at Mars observed by MAVEN. Geophysical Research Letters, 44, 229 – 11. https://doi.org/10.1002/2017GL075831
dc.identifier.citedreferenceXu, S., Mitchell, D. L., Weber, T., Brain, D. A., Luhmann, J. G., Dong, C., et al. ( 2020 ). Characterizing Mars’s magnetotail topology with respect to the upstream interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2019JA027755
dc.identifier.citedreferenceXu, S., Weber, T., Mitchell, D. L., Brain, D. A., Mazelle, C., DiBraccio, G. A., & Espley, J. ( 2019 ). A technique to infer magnetic topology at Mars and its application to the terminator region. Journal of Geophysical Research: Space Physics, 124, 1823 – 1842. https://doi.org/10.1029/2018JA026366
dc.identifier.citedreferenceYeroshenko, Y., Riedler, W., Schwingenschuh, K., Luhmann, J. G., Ong, M., & Russell, C. T. ( 1990 ). The Magnetotail of Mars: Phobos Observations. Geophysical Research Letters. https://doi.org/10.1029/GL017i006p00885
dc.identifier.citedreferenceAcuña, M. H., Connerney, J. E. P., Ness, Lin, R. P., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790 – 793. https://doi.org/10.1126/science.284.5415.790
dc.identifier.citedreferenceAcuña, M. H., Connerney, J. E. P., Wasilewski, P. A., Lin, R. P., Anderson, K. A., Carlson, C. W., et al. ( 1998 ). Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science, 279 ( 5357 ), 1676 – 1680.
dc.identifier.citedreferenceArtemyev, A. V., Angelopoulos, V., Halekas, J. S., Runov, A., Zelenyi, L. M., & McFadden, J. P. ( 2017 ). Mars’s magnetotail: Nature’s current sheet laboratory. Journal of Geophysical Research: Space Physics, 122, 5404 – 5417. https://doi.org/10.1002/2017JA024078
dc.identifier.citedreferenceBowers, C. F., Slavin, J. A., DiBraccio, G. A., Poh, G., Hara, T., Xu, S., & Brain, D. A. ( 2021 ). MAVEN survey of magnetic flux rope properties in the Martian ionosphere: Comparison with three types of formation mechanisms. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL093296
dc.identifier.citedreferenceBrain, D., Barabash, S., Boesswetter, A., Bougher, S., Brecht, S., Chanteur, G., et al. ( 2010 ). A comparison of global models for the solar wind interaction with Mars. Icarus, 206, 139 – 151. https://doi.org/10.1016/j.icarus.2009.06.030
dc.identifier.citedreferenceBrain, D. A., Bagenal, F., Acuna, M. H., & Connerney, J. E. P. ( 2003 ). Martian magnetic morphology: Contributions from the solar wind and crust. Journal of Geophysical Research, 108. https://doi.org/10.1029/2002JA009482
dc.identifier.citedreferenceBrain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., Halekas, J. S., & Phan, T. D. ( 2010 ). Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL043916
dc.identifier.citedreferenceBrain, D. A., Mitchell, D., & Halekas, J. ( 2006 ). The magnetic eld draping direction at Mars from April 1999 through August 2004. https://doi.org/10.1016/icarus.2005.09.023
dc.identifier.citedreferenceBriggs, J. A., Brain, D. A., Cartwright, M. L., Eastwood, J. P., & Halekas, J. S. ( 2011 ). A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 59, 1498 – 1505. https://doi.org/10.1016/j.pss.2011.06.010
dc.identifier.citedreferenceConnerney, J. E. P., Acuna, M. H., Ness, N. F., Kletetschka, G., Mitchell, D. L., Lin, R. P., & Reme, H. ( 2005 ). Tectonic implications of Mars crustal magnetism. P Natl Acad Sci USA, 102 ( 42 ), 14970 – 14975. https://doi.org/10.1073/pnas.0507469102
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN Magnetic Field Investigation. Space Science Reviews, 195 ( 1–4 ), 257 – 291. https://doi.org/10.1007/s11214-015-0169-4
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ). Magnetospheric asymmetries associated with the Y-component of the IMF. Planetary and Space Science, 29, 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0
dc.identifier.citedreferenceCrider, D. H., Brain, D. A., Acuna, M. H., Vignes, D., Mazelle, C., & Bertucci, C. ( 2004 ). Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Science Reviews, 111 ( 1–2 ), 203 – 221. https://doi.org/10.1007/978-0-306-48604-3_5
dc.identifier.citedreferenceDiBraccio, G. A., Dann, J., Espley, J. R., Gruesbeck, J. R., Soobiah, Y., Connerney, J. E. P., et al. ( 2017 ). MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 122, 4308 – 4324. https://doi.org/10.1002/2016JA023488
dc.identifier.citedreferenceDiBraccio, G. A., Espley, J. R., Gruesbeck, J. R., Connerney, J. E. P., Brain, D. A., Halekas, J. S., et al. ( 2015 ). Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 42, 8828 – 8837. https://doi.org/10.1002/2015GL065248
dc.identifier.citedreferenceDiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S., Mitchell, D. L., et al. ( 2018 ). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophysical Research Letters, 45, 4559 – 4568. https://doi.org/10.1029/2018GL077251
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., et al. ( 2017 ). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 4009 – 4022. https://doi.org/10.1002/2016JA023517
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., & Vaisberg, O. ( 2011 ). Ion energization and escape on Mars and Venus. Space Science Reviews, 173 – 211. https://doi.org/10.1007/978-1-4614-3290-6_6
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Halekas, J. S., Mcfadden, J., Connerney, J. E. P., et al. ( 2018 ). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophysical Research Letters, 45, 2574 – 2579. https://doi.org/10.1002/2017GL076813
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., et al. ( 2017 ). The eect of solar wind variations on the escape of oxygen ions from Mars through dierent channels: MAVEN observations. Journal of Geophysical Research: Space Physics, 122. https://doi.org/10.1002/2017JA024741
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Tellmann, S., Woch, J., McFadden, J., & Zelenyi, L. ( 2021 ). Bursty ion escape fluxes at Mars. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2020JA028920
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Zhang, T. L., Woch, J., & Wei, Y. ( 2014b ). Magnetic elds in the Mars ionosphere of a noncrustal origin: Magnetization features. Geophysical Research Letters, 41, 6329 – 6334. https://doi.org/10.1002/2014GL061453
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Zhang, T. L., Woch, J., & Wei, Y. ( 2014a ). Magnetic elds in the Venus ionosphere: Dependence on the IMF direction: Venus express observations. Journal of Geophysical Research: Space Physics, 119, 7587 – 7600. https://doi.org/10.1002/2014JA020195
dc.identifier.citedreferenceDubinin, E., Israelevich, P. L., & Podgomy, I. M. ( 1980 ). Combined magnetosphere. Cosmic Research, 18 ( 470 ). https://doi.org/10.1016/0008-6223(80)90007-x
dc.identifier.citedreferenceDubinin, E., Lundin, R., Norberg, O., & Pissarenko, N. ( 1993 ). Ion-Acceleration in the Martian Tail: Phobos Observations. Journal of Geophysical Research: Space Physics. https://doi.org/10.1029/92JA02233
dc.identifier.citedreferenceDubinin, E., Modolo, R., Fraenz, M., Pätzold, M., Woch, J., Chai, L., et al. ( 2019 ). The induced magnetosphere of Mars: Asymmetrical topology of the magnetic field lines. Geophysical Research Letters, 46, 12722 – 12730. https://doi.org/10.1029/2019GL084387
dc.identifier.citedreferenceEastwood, J. P., Brain, D. A., Halekas, J. S., Drake, J. F., & Phan, T. D., ( 2008 ). Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 35. https://doi.org/10.1029/2007GL032289
dc.identifier.citedreferenceEastwood, J. P., Videira, J. J. H., Brain, D. A., & Halekas, J. S. ( 2012 ). A chain of magnetic flux ropes in the magnetotail of Mars. Geophysical Research Letters, 39. https://doi.org/10.1029/2011GL050444
dc.identifier.citedreferenceGrigorenko, E. E., Shuvalov, S. D., Malova, H. V., Dubinin, E., Popov, V. Y., Zelenyi, L. M., et al. ( 2017 ). Imprints of quasi-adiabatic ion dynamics on the current sheet structures observed in the Martian magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 122, 176 – 10. https://doi.org/10.1002/2017JA024216
dc.identifier.citedreferenceGrigorenko, E. E., Zelenyi, L. M., DiBraccio, G. A., Ermakov, V. N., Shuvalov, S. D., Malova, H. V., et al. ( 2019 ). Thin current sheets of sub-ion scales observed by MAVEN in the Martian magnetotail. Geophysical Research Letters, 46, 6214 – 6222. https://doi.org/10.1029/2019GL082709
dc.identifier.citedreferenceHalekas, J. S., Brain, D. A., Lillis, R. J., Fillingim, M. O., Mitchell, D. L., & Lin, R. P. ( 2006 ). Current sheets at low altitudes in the Martian magnetotail. Geophysical Research Letters, 33. https://doi.org/10.1029/2006GL026229
dc.identifier.citedreferenceHalekas, J. S., Brain, D. A., Ruhunusiri, S., McFadden, J. P., Mitchell, D. L., Mazelle, C., et al. ( 2016 ). Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 43, 1426 – 1434. https://doi.org/10.1002/2016GL067752
dc.identifier.citedreferenceHalekas, J. S., Eastwood, J. P., Brain, D. A., Phan, T. D., Oieroset, M., & Lin, R. P. ( 2009 ). In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters. Journal of Geophysical Research: Space Physics, 114. https://doi.org/10.1029/2009JA014544
dc.identifier.citedreferenceHalekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. ( 2017 ). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122, 547 – 578. https://doi.org/10.1002/2016JA023167
dc.identifier.citedreferenceHalekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. ( 2015 ). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews. https://doi.org/10.1007/s11214-013-0029-z
dc.identifier.citedreferenceHara, T., Harada, Y., Mitchell, D. L., DiBraccio, G. A., Espley, J. R., Brain, D. A., et al. ( 2017 ). On the origins of magnetic flux ropes in near-Mars magnetotail current sheets. Geophysical Research Letters, 44, 7653 – 7662. https://doi.org/10.1002/2017gl073754
dc.identifier.citedreferenceHara, T., Mitchell, D. L., McFadden, J. P., Seki, K., Brain, D. A., Halekas, J. S., et al. ( 2015 ). Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 42, 8933 – 8941. https://doi.org/10.1002/2015GL065720
dc.identifier.citedreferenceHara, T., Seki, K., Hasegawa, H., Brain, D. A., Matsunaga, K., Saito, M. H., & Shiota, D. ( 2014 ). Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction. Journal of Geophysical Research: Space Physics, 119, 7947 – 7962. https://doi.org/10.1002/2014JA019943
dc.identifier.citedreferenceHarada, Y., Halekas, J. S., McFadden, J. P., Espley, J., DiBraccio, G. A., Mitchell, D. L., et al. ( 2017 ). Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 122, 5114 – 5131. https://doi.org/10.1002/2017ja023952
dc.identifier.citedreferenceHarada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., et al. ( 2015 ). Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophysical Research Letters, 42 ( 21 ), 8838 – 8845. https://doi.org/10.1002/2015gl065004
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.