Show simple item record

Computational Identification and Experimental Demonstration of High-Performance Methane Sorbents

dc.contributor.authorNath, Karabi
dc.contributor.authorAhmed, Alauddin
dc.contributor.authorSiegel, Donald J.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2022-07-05T21:03:19Z
dc.date.available2023-07-05 17:03:18en
dc.date.available2022-07-05T21:03:19Z
dc.date.issued2022-06-20
dc.identifier.citationNath, Karabi; Ahmed, Alauddin; Siegel, Donald J.; Matzger, Adam J. (2022). "Computational Identification and Experimental Demonstration of High-Performance Methane Sorbents." Angewandte Chemie 134(25): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/173017
dc.description.abstractRemarkable methane uptake is demonstrated experimentally in three metal-organic frameworks (MOFs) identified by computational screening: UTSA-76, UMCM-152 and DUT-23-Cu. These MOFs outperform the benchmark sorbent, HKUST-1, both volumetrically and gravimetrically, under a pressure swing of 80 to 5 bar at 298 K. Although high uptake at elevated pressure is critical for achieving this performance, a low density of high-affinity sites (coordinatively unsaturated metal centers) also contributes to a more complete release of stored gas at low pressure. The identification of these MOFs facilitates the efficient storage of natural gas via adsorption and provides further evidence of the utility of computational screening in identifying overlooked sorbents.Promising MOFs were identified computationally and experimentally demonstrate remarkable methane uptake that outperforms known benchmarks both volumetrically and gravimetrically. An advanced set of interatomic potentials that explicitly account for the presence of coordinatively unsaturated sites (CUS) in MOFs were used to identify the high-capacity MOFs that were previously overlooked due to the limitation of the general interatomic potentials.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMethane Storage
dc.subject.otherDeliverable Capacity
dc.subject.otherInteratomic Potentials
dc.subject.otherMetal Organic Framework (MOF)
dc.subject.otherComputational Screening
dc.titleComputational Identification and Experimental Demonstration of High-Performance Methane Sorbents
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173017/1/ange202203575-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173017/2/ange202203575_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173017/3/ange202203575.pdf
dc.identifier.doi10.1002/ange.202203575
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceN. Klein, I. Senkovska, I. A. Baburin, R. Gruenker, U. Stoeck, M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni, M. Hirscher, S. Kaskel, Chem. Eur. J. 2011, 17, 13007 – 13016.
dc.identifier.citedreferenceD. A. Gómez-Gualdrón, C. E. Wilmer, O. K. Farha, J. T. Hupp, R. Q. Snurr, J. Phys. Chem. C 2014, 118, 6941 – 6951.
dc.identifier.citedreferenceZ. Chen, M. R. Mian, S.-J. Lee, H. Chen, X. Zhang, K. O. Kirlikovali, S. Shulda, P. Melix, A. S. Rosen, P. A. Parilla, T. Genett, R. Q. Snurr, T. Islamoglu, T. Yildirim, O. K. Farha, J. Am. Chem. Soc. 2021, 143, 18838 – 18843.
dc.identifier.citedreferenceH. S. Koh, M. K. Rana, A. G. Wong-Foy, D. J. Siegel, J. Phys. Chem. C 2015, 119, 13451 – 13458.
dc.identifier.citedreferenceC. R. Cioce, Computational Investigations of Potential Energy Function Development for Metal-Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents, University of South Florida, 2015.
dc.identifier.citedreferenceC. R. Cioce, K. McLaughlin, J. L. Belof, B. Space, J. Chem. Theory Comput. 2013, 9, 5550 – 5557.
dc.identifier.citedreferenceY. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K. D. Vogiatzis, M. Milisavljevic, S. Ling, J. S. Camp, B. Slater, J. I. Siepmann, D. S. Sholl, R. Q. Snurr, J. Chem. Eng. Data 2019, 64, 5985 – 5998.
dc.identifier.citedreferenceM. G. Martin, J. I. Siepmann, J. Phys. Chem. B 1998, 102, 2569 – 2577.
dc.identifier.citedreferenceS. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897 – 8909.
dc.identifier.citedreferenceA. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024 – 10035.
dc.identifier.citedreferenceJ. Jiang, H. Furukawa, Y.-B. Zhang, O. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 10244 – 10251.
dc.identifier.citedreferenceJ. K. Schnobrich, O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 13941 – 13948.
dc.identifier.citedreferenceB. Li, H.-M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W. Zhou, B. Chen, J. Am. Chem. Soc. 2014, 136, 6207 – 6210.
dc.identifier.citedreferenceA. Ahmed, S. Seth, J. Purewal, A. G. Wong-Foy, M. Veenstra, A. J. Matzger, D. J. Siegel, Nat. Commun. 2019, 10, 1568.
dc.identifier.citedreferenceR. A. Dodson, A. G. Wong-Foy, A. J. Matzger, Chem. Mater. 2018, 30, 6559 – 6565.
dc.identifier.citedreferenceL. Feng, K.-Y. Wang, G. S. Day, M. R. Ryder, H.-C. Zhou, Chem. Rev. 2020, 120, 13087 – 13133.
dc.identifier.citedreferenceH. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
dc.identifier.citedreferenceJ. Ma, A. P. Kalenak, A. G. Wong-Foy, A. J. Matzger, Angew. Chem. Int. Ed. 2017, 56, 14618 – 14621; Angew. Chem. 2017, 129, 14810 – 14813.
dc.identifier.citedreferenceH. Wu, J. M. Simmons, Y. Liu, C. M. Brown, X.-S. Wang, S. Ma, V. K. Peterson, P. D. Southon, C. J. Kepert, H.-C. Zhou, T. Yildirim, W. Zhou, Chem. Eur. J. 2010, 16, 5205 – 5214.
dc.identifier.citedreferenceS. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2008, 130, 1012 – 1016.
dc.identifier.citedreferenceH. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc. 2009, 131, 4995 – 5000.
dc.identifier.citedreferenceJ. I. Feldblyum, D. Dutta, A. G. Wong-Foy, A. Dailly, J. Imirzian, D. W. Gidley, A. J. Matzger, Langmuir 2013, 29, 8146 – 8153.
dc.identifier.citedreferenceL. D. Tran, J. I. Feldblyum, A. G. Wong-Foy, A. J. Matzger, Langmuir 2015, 31, 2211 – 2217.
dc.identifier.citedreferenceM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469 – 472.
dc.identifier.citedreferenceH. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424 – 428.
dc.identifier.citedreferenceD. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, L. J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 13308 – 13318.
dc.identifier.citedreferenceJ. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, D. J. Siegel, Chem. Mater. 2013, 25, 3373 – 3382.
dc.identifier.citedreferenceA. Celzard, V. Fierro, Energy Fuels 2005, 19, 573 – 583.
dc.identifier.citedreferenceR. W. Howarth, R. Santoro, A. Ingraffea, Clim. Change 2011, 106, 679 – 690.
dc.identifier.citedreferenceAlternative Fuels Data Center, Fuel Properties Comparison, 2013. http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf.
dc.identifier.citedreferenceT. A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Chem. Soc. Rev. 2012, 41, 7761 – 7779.
dc.identifier.citedreference“Issues Affecting Adoption of Natural Gas in Light- and Heavy-Duty Vehicles”: G. A. Whyatt, 2010, PNNL-19745.
dc.identifier.citedreferenceV. C. Menon, S. Komarneni, J. Porous Mater. 1998, 5, 43 – 58.
dc.identifier.citedreferenceJ. Wegrzyn, M. Gurevich, Appl. Energy 1996, 55, 71 – 83.
dc.identifier.citedreferenceY. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657 – 5678.
dc.identifier.citedreferenceB. Li, H.-M. Wen, W. Zhou, J. Q. Xu, B. Chen, Chem 2016, 1, 557 – 580.
dc.identifier.citedreferenceS. M. Cohen, Chem. Rev. 2012, 112, 970 – 1000.
dc.identifier.citedreferenceU. Stoeck, S. Krause, V. Bon, I. Senkovska, S. Kaskel, Chem. Commun. 2012, 48, 10841 – 10843.
dc.identifier.citedreferenceM. Zhang, W. Zhou, T. Pham, K. A. Forrest, W. Liu, Y. He, H. Wu, T. Yildirim, B. Chen, B. Space, Y. Pan, M. J. Zaworotko, J. Bai, Angew. Chem. Int. Ed. 2017, 56, 11426 – 11430; Angew. Chem. 2017, 129, 11584 – 11588.
dc.identifier.citedreferenceJ. A. Mason, M. Veenstra, J. R. Long, Chem. Sci. 2014, 5, 32 – 51.
dc.identifier.citedreferenceF. Gándara, H. Furukawa, S. Lee, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 5271 – 5274.
dc.identifier.citedreferenceY. Yan, D. I. Kolokolov, I. da Silva, A. G. Stepanov, A. J. Blake, A. Dailly, P. Manuel, C. C. Tang, S. Yang, M. Schroder, J. Am. Chem. Soc. 2017, 139, 13349 – 13360.
dc.identifier.citedreferenceY. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, T. Yildirim, J. Am. Chem. Soc. 2013, 135, 11887 – 11894.
dc.identifier.citedreferenceC. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83 – 89.
dc.identifier.citedreferenceY. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr, Chem. Mater. 2014, 26, 6185 – 6192.
dc.identifier.citedreferenceC. M. Simon, J. Kim, D. A. Gomez-Gualdron, J. S. Camp, Y. G. Chung, R. L. Martin, R. Mercado, M. W. Deem, D. Gunter, M. Haranczyk, D. S. Sholl, R. Q. Snurr, B. Smit, Energy Environ. Sci. 2015, 8, 1190 – 1199.
dc.identifier.citedreferenceM. Fernandez, T. K. Woo, C. E. Wilmer, R. Q. Snurr, J. Phys. Chem. C 2013, 117, 7681 – 7689.
dc.identifier.citedreferenceY. Bao, R. L. Martin, C. M. Simon, M. Haranczyk, B. Smit, M. W. Deem, J. Phys. Chem. C 2015, 119, 186 – 195.
dc.identifier.citedreferenceY. Bao, R. L. Martin, M. Haranczyk, M. W. Deem, Phys. Chem. Chem. Phys. 2015, 17, 11962 – 11973.
dc.identifier.citedreferenceY. J. Colón, D. A. Gómez-Gualdrón, R. Q. Snurr, Cryst. Growth Des. 2017, 17, 5801 – 5810.
dc.identifier.citedreferenceD. A. Gomez-Gualdron, O. V. Gutov, V. Krungleviciute, B. Borah, J. E. Mondloch, J. T. Hupp, T. Yildirim, O. K. Farha, R. Q. Snurr, Chem. Mater. 2014, 26, 5632 – 5639.
dc.identifier.citedreferenceS. Lee, B. Kim, H. Cho, H. Lee, S. Y. Lee, E. S. Cho, J. Kim, ACS Appl. Mater. Interfaces 2021, 13, 23647 – 23654.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.