Show simple item record

Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome

dc.contributor.authorHasler, William L.
dc.contributor.authorGrabauskas, Gintautas
dc.contributor.authorSingh, Prashant
dc.contributor.authorOwyang, Chung
dc.date.accessioned2022-07-05T21:03:45Z
dc.date.available2023-08-05 17:03:44en
dc.date.available2022-07-05T21:03:45Z
dc.date.issued2022-07
dc.identifier.citationHasler, William L.; Grabauskas, Gintautas; Singh, Prashant; Owyang, Chung (2022). "Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome." Neurogastroenterology & Motility (7): n/a-n/a.
dc.identifier.issn1350-1925
dc.identifier.issn1365-2982
dc.identifier.urihttps://hdl.handle.net/2027.42/173025
dc.description.abstractAbnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermast cell
dc.subject.othermicrobiome
dc.subject.otherbarrier function
dc.subject.otherIBS
dc.subject.othervisceral hypersensitivity
dc.titleMast cell mediation of visceral sensation and permeability in irritable bowel syndrome
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173025/1/nmo14339.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173025/2/nmo14339_am.pdf
dc.identifier.doi10.1111/nmo.14339
dc.identifier.sourceNeurogastroenterology & Motility
dc.identifier.citedreferenceMaubach KA, Grundy D. The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. J Physiol. 1999; 515: 277 - 285.
dc.identifier.citedreferenceBertiaux-Vandaële N, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease bubtype. Am J Gastroenterol. 2011; 106: 2165 - 2173.
dc.identifier.citedreferenceZhou QiQi, Zhang B, Verne NG, et al. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009; 146: 41 - 46.
dc.identifier.citedreferenceYang X, Sheng L, Guan Y, Qian W, Hou X. Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection. Dig Dis Sci. 2009; 54: 937 - 946.
dc.identifier.citedreferenceDu L, Long Y, Kim JJ, et al. Protease activated receptor-2 induces immune activation and visceral hypersensitivity in post-infectious irritable bowel syndrome mice. Dig Dis Sci. 2019; 64: 729 - 739.
dc.identifier.citedreferenceLi Y, et al. Metformin prevents colonic barrier dysfunction by inhibiting mast cell activation in maternal separation-induced IBS-like rats. Neurogastroenterol Motil. 2019; 31: e13556.
dc.identifier.citedreferenceCamilleri M, Halawi H, Oduyebo I. Biomarkers as a diagnostic tool for irritable bowel syndrome: where are we? Expert Rev Gastroenterol Hepatol. 2017; 11: 303 - 316.
dc.identifier.citedreferenceKasakura K, et al. Commensal bacteria directly suppress in vitro degranulation of mast cells in a MyD88-independent manner. Biosci Biotchnol Biochem. 2014; 78: 1669 - 1676.
dc.identifier.citedreferenceTana C, et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010; 22: 512 - 519.
dc.identifier.citedreferenceGalli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005; 6: 135 - 142.
dc.identifier.citedreferenceCrouzet L, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013; 25: e272 - e282.
dc.identifier.citedreferenceMoreno L, Gatheral T. Therapeutic targeting of NOD1 receptors. Br J Pharmacol. 2013; 170: 475 - 485.
dc.identifier.citedreferenceSupajatura V, Ushio H, Nakao A, et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest. 2002; 109: 1351 - 1359.
dc.identifier.citedreferencePothoulakis C, Karmeli F, Kelly CP, et al. Ketotifen inhibits Clostridium difficile toxin A-induced enteritis in rat ileum. Gastroenterology. 1993; 105: 701 - 707.
dc.identifier.citedreferenceRocha MFG, Aguiar JEP, Sidrim JJC, et al. Role of mast cells and pro-inflammatory mediators on the intestinal secretion induced by cholera toxin. Toxicon. 2003; 42: 183 - 189.
dc.identifier.citedreferenceBotschuijver S, et al. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci Rep. 2019; 9: 12530.
dc.identifier.citedreferenceBotschuijver S, Roeselers G, Levin E, et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology. 2017; 153: 1026 - 1039.
dc.identifier.citedreferenceZhou S-Y, Gillilland M, Wu X, et al. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J Clin Invest. 2018; 128: 267 - 280.
dc.identifier.citedreferenceSingh P, et al. High FODMAP diet causes barrier loss via liposaccharide mediated mast cell activation. JCI Insight. 2021; 6: e146529.
dc.identifier.citedreferenceMujagic Z, et al. A novel biomarker panel for irritable bowel syndrome and the application in the general population. Sci Rep. 2016; 6: 26420.
dc.identifier.citedreferenceEswaran SL, Chey WD, Han-Markey T, et al. A randomized controlled trial comparing the low FODMAP diet vs. modified NICE guidelines in US adults with IBS-D. Am J Gastroenterol. 2016; 111: 1824 - 1832.
dc.identifier.citedreferenceDionne J, et al. A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low FODMAP diet in treating symptoms of irritable bowel syndrome. Am J Gastroenterol. 2018; 113: 1290 - 1300.
dc.identifier.citedreferenceBarbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil. 2006; 18: 6 - 17.
dc.identifier.citedreferenceCremon C, Stanghellini V, Barbaro MR, et al. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment Pharmacol Ther. 2017; 45: 909 - 922.
dc.identifier.citedreferenceLacy BE, Mearin F, Chang L, et al. Bowel disorders. Gastroenterology. 2016; 150 ( 6 ): 1393 - 1407.e5. doi: 10.1053/j.gastro.2016.02.031
dc.identifier.citedreferenceMertz H, Naliboff B, Munakara J, Niazi N, Mayer EA. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995; 109: 40 - 52.
dc.identifier.citedreferenceCamilleri M, et al. Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2008; 6: 772 - 781.
dc.identifier.citedreferenceCamilleri M, Lasch K, Zhou K. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012; 303: G775 - G785.
dc.identifier.citedreferencePittayanon R, Lau JT, Yuan Y, et al. Gut microbiota in patients with irritable bowel syndrome—a systematic review. Gastroenterology. 2019; 157: 97 - 108.
dc.identifier.citedreferenceHughes PA, Zola H, Penttila IA, et al. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol. 2013; 108: 1066 - 1074.
dc.identifier.citedreferenceWouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016; 65: 155 - 168.
dc.identifier.citedreferenceGilfillan AM, Austin SJ, Metcalfe DD. Mast cell biology: introduction and overview. Adv Exp Med Biol. 2011; 716: 2 - 12.
dc.identifier.citedreferenceMetcalfe DD, Baram D, Mekori MA. Mast cells. Physiol Rev. 1997; 77: 1033 - 1079.
dc.identifier.citedreferenceIrani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neural protease compositions. Proc Natl Acad Sci U S A. 1986; 83: 4464 - 4468.
dc.identifier.citedreferenceGerman AJ, Hall EJ, Day MJ. Analysis of leucocyte subsets in the canine intestine. J Comp Pathol. 1999; 120: 129 - 145.
dc.identifier.citedreferenceStead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989; 97: 575 - 585.
dc.identifier.citedreferenceStead RH, Tomioka M, Quinonez G, et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci U S A. 1987; 84: 2975 - 2979.
dc.identifier.citedreferenceTheoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev. 2007; 217: 65 - 78.
dc.identifier.citedreferenceWood JD. Histamine, mast cells, and the enteric nervous system in the irritable bowel syndrome, enteritis, and food allergies. Gut. 2006; 55: 445 - 447.
dc.identifier.citedreferenceBuhner S, Li Q, Vignali S, et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology. 2009; 137: 1425 - 1434.
dc.identifier.citedreferenceHeavey DJ, et al. Generation of leukotriene C4, leukotriene B4, and prostaglandin D2 by immunologically activated rat mucosa mast cells. J Immunol. 1988; 140: 1953 - 1957.
dc.identifier.citedreferenceCoelho AM, Vergnolle N, Guiard B, Fioramonti J, Bueno L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology. 2002; 122: 1035 - 1047.
dc.identifier.citedreferenceCenac N, Andrews CN, Holzhausen M, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest. 2007; 117: 636 - 647.
dc.identifier.citedreferenceValdez-Morales EE, Overington J, Guerrero-Alba R, et al. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am J Gastroenterol. 2013; 108: 1634 - 1643.
dc.identifier.citedreferenceMolino M, Barnathan ES, Numerof R, et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem. 1997; 272: 4043 - 4049.
dc.identifier.citedreferenceWedemeyer J, Tsai M, Galli SJ. Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol. 2000; 12: 624 - 631.
dc.identifier.citedreferenceMukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018; 282: 121 - 150.
dc.identifier.citedreferenceGrabauskas G, Wu X, Gao J, et al. Prostaglandin E 2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice. Gastroenterology. 2020; 158: 2195 - 2207.
dc.identifier.citedreferenceZhang S, et al. Role of prostaglandin D 2 in mast cell activation-induced sensitization of esophageal vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2013; 304: G908 - G916.
dc.identifier.citedreferenceFerreira SH. Prostaglandins, aspirin-like drugs and analgesia. Nat New Biol. 1972; 240: 200 - 203.
dc.identifier.citedreferenceAn S, Zong G, Wang Z, et al. Expression of inducible nitric oxide synthase in mast cells contributes to the regulation of inflammatory cytokines in irritable bowel syndrome with diarrhea. Neurogastroenterol Motil. 2016; 28: 1083 - 1093.
dc.identifier.citedreferenceMarnett LJ, Wright TL, Crews BC, Tannenbaum SR, Morrow JD. Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. J Biol Chem. 2000; 275: 13427 - 13430.
dc.identifier.citedreferenceShanahan F, Denburg JA, Fox J, Bienenstock J, Befus D. Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J Immunol. 1985; 135: 1331 - 1337.
dc.identifier.citedreferenceBuhner S, Schemann M. Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 2012; 1822: 85 - 92.
dc.identifier.citedreferenceCollins SM, McHugh K, Jacobson K, et al. Previous inflammation alters the response of the rat colon to stress. Gastroenterology. 1996; 111: 1509 - 1515.
dc.identifier.citedreferenceNishida M, Uchikawa R, Tegoshi T, et al. Migration of neutrophils is dependent on mast cells in nonspecific pleurisy in rats. APMIS. 1999; 107: 929 - 936.
dc.identifier.citedreferenceTheiner G, Gessner A, Lutz MB. The mast cell mediator PGD 2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology. 2006; 211: 463 - 472.
dc.identifier.citedreferenceNakae S, Suto H, Kakurai M, et al. Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc Natl Acad Sci U S A. 2005; 1021: 6467 - 6472.
dc.identifier.citedreferenceMerluzzi S, Frossi B, Gri G, et al. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood. 2010; 115: 2810 - 2817.
dc.identifier.citedreferenceBarbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007; 132: 26 - 37.
dc.identifier.citedreferenceDe Jonge F, De Laet A, Van Nassauw L, et al. In vitro activation of murine DRG neurons by CGRP-mediated mucosal mast cell degranulation. Am J Physiol Gastrointest Liver Physiol. 2004; 287: G178 - G191.
dc.identifier.citedreferenceMagadmi R, Meszaros J, Damanhouri ZA, Seward EP. Secretion of mast cell inflammatory mediators is enhanced by CADM1-dependent adhesion to sensory neurons. Front Cell Neurosci. 2019; 13: 262.
dc.identifier.citedreferenceHe S, Zhang H, Zeng X, Yang P. Self-amplification mechansism of mast cell activation: a new look in allergy. Curr Mol Med. 2012; 12: 1329 - 1339.
dc.identifier.citedreferenceHe S, Zhang H, Chen H, et al. Expression and release of IL-29 by mast cells and modulation of mast cell behavior by IL-29. Allergy. 2010; 65: 1234 - 1241.
dc.identifier.citedreferenceTerakawa M, Tomimori Y, Goto M, et al. Eosinophil migration induced by mast cell chymase is mediated by extracellular signal-regulated kinase pathway. Biochim Biophys Res Commun. 2005; 332: 969 - 975.
dc.identifier.citedreferenceWood JD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology. 2004; 127: 635 - 657.
dc.identifier.citedreferenceFrieling T, Meis K, Kolck U, et al. Evidence for mast cell activation in patients with therapy-resistant irritable bowel syndrome. Z Gastroenterol. 2011; 49: 191 - 194.
dc.identifier.citedreferenceBashashati M, Moossavi S, Cremon C, et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2018; 30 ( 1 ): e13192. doi: 10.1111/nmo.13192
dc.identifier.citedreferenceRobles A, et al. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2019; 31: e13718.
dc.identifier.citedreferenceBurns G, et al. Evidence for local and systemic immune activation in functional dyspepsia and irritable bowel syndrome: a systematic review. Am J Gastroenterol. 2019; 114: 429 - 436.
dc.identifier.citedreferenceAhn JY, et al. Colonic mucosal immune activity in irritable bowel syndrome: comparison with healthy controls and patients with ulcerative colitis. Dig Dis Sci. 2014; 59: 1001 - 1011.
dc.identifier.citedreferenceO’Sullivan M, Clayton N, Breslin NP, et al. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil. 2000; 12: 449 - 457.
dc.identifier.citedreferenceCremon C, Gargano L, Morselli-Labate AM, et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am J Gastroenterol. 2009; 104: 392 - 400.
dc.identifier.citedreferenceEl-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. Changes in the symptom pattern and the densities of large-intestinal endocrine cells following Campylobacter infection in irritable bowel syndrome: a case report. BMC Res Notes. 2013; 6: 391.
dc.identifier.citedreferenceWang LH, Fang XC, Pan GZ. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut. 2004; 53: 1096 - 1101.
dc.identifier.citedreferenceSchmulson M, et al. Microbiota, gastrointestinal infections, low-grade inflammation, and antibiotic therapy in irritable bowel syndrome: an evidence-based review. Rev Gastroenterol Mex. 2014; 79: 96 - 134.
dc.identifier.citedreferenceChadwick VS, Chen W, Shu D, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002; 122: 1778 - 1783.
dc.identifier.citedreferenceSohn W, et al. Mast cell number, substance P and vasoactive intestinal polypeptide in irritable bowel syndrome with diarrhea. Scand J Gastroenterol. 2014; 49: 43 - 51.
dc.identifier.citedreferenceBarbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004; 126: 693 - 702.
dc.identifier.citedreferenceYang J, Fox M, Cong Y, et al. Lactose intolerance in irritable bowel syndrome patients with diarrhoea: the roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity. Aliment Pharmacol Ther. 2014; 39: 302 - 311.
dc.identifier.citedreferencePark JH, Rhee P-L, Kim HS, et al. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhea predominant irritable bowel syndrome. J Gastroenterol Hepatol. 2006; 21: 71 - 78.
dc.identifier.citedreferenceDi Nardo G, Barbara G, Cucchiara S, et al. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol Motil. 2014; 26: 196 - 204.
dc.identifier.citedreferenceSchemann M, Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology. 2013; 144: 698 - 704.
dc.identifier.citedreferenceBednarska O, Walter SA, Casado-Bedmar M, et al. Vasoactive intestinal polypeptide and mast cells regulate increased passage of colonic bacteria in patients with irritable bowel syndrome. Gastroenterology. 2017; 153: 948 - 960.
dc.identifier.citedreferenceCenac N, Bautzova T, Le Faouder P, et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology. 2015; 149: 433 - 444.
dc.identifier.citedreferenceBarbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut. 2002; 51 ( Suppl 1 ): 41 - 44.
dc.identifier.citedreferenceLiang W-J, Zhang G, Luo H-S, et al. Tryptase and protease-activated receptor 2 expression levels in irritable bowel syndrome. Gut Liv. 2016; 10: 382 - 390.
dc.identifier.citedreferenceGecse K, Roka R, Ferrier L, et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut. 2008; 57: 591 - 599.
dc.identifier.citedreferenceTooth D, Garsed K, Singh G, et al. Characterisation of faecal protease activity in irritable bowel syndrome with diarrhoea: origin and effect of gut transit. Gut. 2014; 63: 753 - 760.
dc.identifier.citedreferenceMartínez C, Lobo B, Pigrau M, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013; 62: 1160 - 1168.
dc.identifier.citedreferenceScully P, McKernan DP, Keohane J, et al. Plasma cytokine profiles in females with irritable bowel syndrome and extra-intestinal co-morbidity. Am J Gastroenterol. 2010; 105: 2235 - 2243.
dc.identifier.citedreferenceWillot S, Gauthier C, Patey N, Faure C. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012; 24: 734 - 739.
dc.identifier.citedreferenceDothel G, Barbaro MR, Boudin H, et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2015; 148: 1002 - 1011.
dc.identifier.citedreferenceCremon C, Carini G, Wang B, et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol. 2011; 106: 1290 - 1298.
dc.identifier.citedreferenceKodani M, et al. Association between gastrointestinal motility and macrophage/mast cell distribution in mice during the healing phase after DSS-induced colitis. Mol Med Rep. 2018; 17: 8167 - 8172.
dc.identifier.citedreferenceSong J, Zhang L, Bai T, et al. Mast cell-dependent mesenteric afferent activation by mucosal supernatant from different bowel segments of guinea pigs with post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2015; 21: 236 - 246.
dc.identifier.citedreferenceChen B-R, Du L-J, He H-Q, et al. Fructo-oligosaccharide intensifies visceral hypersensitivity and intestinal inflammation in a stress-induced irritable bowel syndrome mouse model. World J Gastroenterol. 2017; 23: 8321 - 8333.
dc.identifier.citedreferenceIbeakanma C, Ochoa–Cortes F, Miranda–Morales M, et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology. 2011; 141: 2098 - 2108.
dc.identifier.citedreferenceTache Y, Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J Neurogastroenterol Motil. 2015; 21: 8 - 24.
dc.identifier.citedreferenceSantos J, Saperas E, Nogueiras C, et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology. 1998; 114: 640 - 648.
dc.identifier.citedreferenceSagami Y. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut. 2004; 53: 958 - 964.
dc.identifier.citedreferenceTheoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004; 25: 563 - 568.
dc.identifier.citedreferenceCao J, Papadopoulou N, Kempuraj D, et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. 2005; 174: 7665 - 7675.
dc.identifier.citedreferenceVanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014; 63: 1293 - 1299.
dc.identifier.citedreferenceLobo B, Vicario M, Martinez C, et al. Clinical improvement in IBS after disodium cromoglycate involves mast cell-mediated toll-like receptor signaling downregulation (abstract). Gastroenterology. 2011; 140 ( Suppl 1 ): 499 - 500.
dc.identifier.citedreferenceLunardi C, et al. Double-blind cross-over trial of oral sodium cromoglycate in patients with irritable bowel syndrome due to food intolerance. Clin Exp Allergy. 1991; 21: 569 - 572.
dc.identifier.citedreferenceStefanini GF, Saggioro A, Alvisi V, et al. Oral cromolyn sodium in comparison with elimination diet in the irritable bowel syndrome, diarrheic type. Multicenter study of 428 patients. Scand J Gastroenterol. 1995; 30: 535 - 541.
dc.identifier.citedreferenceLeri O, Tubili S, De Rosa FG, et al. Management of diarrhoeic type of irritable bowel syndrome with exclusion diet and disodium cromoglycate. Inflammopharmacology. 1997; 5: 153 - 158.
dc.identifier.citedreferenceKlooker TK, et al. The mast cell stabilizer ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010; 59: 1213 - 1221.
dc.identifier.citedreferenceWang J, Wang Y, Zhou H, et al. Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur J Gastroenterol Hepatol. 2020; 32: 706 - 712.
dc.identifier.citedreferenceWouters MM, Balemans D, Van Wanrooy S, et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology. 2016; 150: 875 - 887.
dc.identifier.citedreferenceModani S, Cortes O, Thomas R. Cyproheptadine use in children with functional gastrointestinal disorders. J Pediatr Gastroenterol Nutr. 2016; 62: 409 - 413.
dc.identifier.citedreferenceGillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007; 151: 737 - 748.
dc.identifier.citedreferenceDorofeyev AE, Kiriyan EA, Vasilenko IV, Rassokhina OA, Elin AF. Clinical, endoscopical and morphological efficacy of mesalazine in patients with irritable bowel syndrome. Clin Exp Gastroenterol. 2011; 4: 141 - 153.
dc.identifier.citedreferenceTuteja AK, Fang JC, Al-Suqi M, Stoddard GJ, Hale DC. Double-blind placebo-controlled study of mesalamine in post-infective irritable bowel syndrome—a pilot study. Scand J Gastroenterol. 2012; 47: 1159 - 1164.
dc.identifier.citedreferenceBarbara G, Cremon C, Annese V, et al. Randomised controlled trial of mesalazine in IBS. Gut. 2016; 65: 82 - 90.
dc.identifier.citedreferenceLam C, et al. A mechanistic multicentre, parallel group, randomised placebo-controlled trial of mesalazine for treatment of IBS with diarrhoea (IBS-D). Gut. 2016; 65: 91 - 99.
dc.identifier.citedreferenceDunlop SP, Jenkins D, Neal KR, et al. Randomized, double-blind, placebo-controlled trial of prednisolone in post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2003; 18: 77 - 84.
dc.identifier.citedreferenceLa JH, Kim TW, Sung TS, et al. Role of mucosal mast cells in visceral hypersensitivity in a rat model of irritable bowel syndrome. J Vet Sci. 2004; 5: 319 - 324.
dc.identifier.citedreferenceOhashi K, Sato Y, Kawai M, Kurebayashi Y. Abolishment of TNBS-induced visceral hypersensitivity in mast cell deficient rats. Life Sci. 2008; 82: 419 - 423.
dc.identifier.citedreferenceBraak B, et al. Mucosal immune cell numbers and visceral sensitivity in patients with irritable bowel syndrome: is there a relationship? Am J Gastroenterol. 2012; 107: 715 - 726.
dc.identifier.citedreferenceJin X, Gereau RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci. 2006; 26: 246 - 255.
dc.identifier.citedreferenceBinshtok AM, et al. Nociceptors are interleukin-1 beta sensors. J Neurosci. 2008; 28: 14062 - 14073.
dc.identifier.citedreferenceXu S, Wang X, Zhao J, et al. GPER-mediated, oestrogen-dependent visceral hypersensitivity in stressed rats is associated with mast cell tryptase and histamine expression. Fundam Clin Pharmacol. 2020; 34: 433 - 443.
dc.identifier.citedreferenceSt-Jacques B, Ma W. Role of prostaglandin E2 in the synthesis of the pro-inflammatory cytokine interleukin-6 in primary sensory neurons: an in vivo and in vitro study. J Neurochem. 2011; 118: 841 - 854.
dc.identifier.citedreferenceCruz Duarte P, St-Jacques B, Ma W. Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model. Exp Neurol. 2012; 234: 466 - 481.
dc.identifier.citedreferenceKim S, Jin Z, Lee G, et al. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons. Biochem Biophys Res Commun. 2015; 456: 167 - 172.
dc.identifier.citedreferenceCunha TM, Verri WA, Silva JS, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A. 2005; 102: 1755 - 1760.
dc.identifier.citedreferencevan den Wijngaard RM, et al. Susceptibility to stress induced visceral hypersensitivity in maternally separated rats in transferred across generations. Neurogastroenterol Motil. 2013; 25: e780 - e790.
dc.identifier.citedreferenceYang J, et al. The role of toll-like receptor 4 and mast cell in the ameliorating effect of electroacupuncture on visceral hypersensitivity in rats. Neurogastroenterol Motil. 2019; 31: e13583.
dc.identifier.citedreferenceStanisor OI, van Diest SA, Yu Z, et al. Stress induced visceral hypersensitivity in maternally separated rats can be reversed by peripherally restricted histamine-1-receptor antagonists. PLoS One. 2013; 8: e66884.
dc.identifier.citedreferenceKamphuis JBJ, Guiard B, Leveque M, et al. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa. Gastroenterology. 2020; 158: 652 - 663.
dc.identifier.citedreferenceRamage JK, Hunt RH, Perdue MH. Changes in intestinal permeability and epithelial differentiation during inflammation in the rat. Gut. 1988; 29: 57 - 61.
dc.identifier.citedreferenceLee H, Park JH, Park DI, et al. Mucosal mast cell count is associated with intestinal permeability in patients with diarrhea predominant irritable bowel syndrome. J Neurogastroenterol Motil. 2013; 19: 244 - 250.
dc.identifier.citedreferenceDemaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut. 2006; 55: 655 - 661.
dc.identifier.citedreferenceSantos J, Benjamin M, Yang PC, Prior T, Perdue MH. Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells.. Am J Physiol Gastrointest Liver Physiol. 2000; 278: G847 - G854.
dc.identifier.citedreferencePerdue MH, Masson S, Wershil BK, Galli SJ. Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation. J Clin Invest. 1991; 87: 687 - 693.
dc.identifier.citedreferenceGroschwitz KR, Ahrens R, Osterfeld H, et al. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc Natl Acad Sci U S A. 2009; 106: 22381 - 22386.
dc.identifier.citedreferencePiche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009; 58: 196 - 201.
dc.identifier.citedreferenceWilcz-Villega EM, McClean S, O’Sullivan MA. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol. 2013; 108: 1140 - 1151.
dc.identifier.citedreferenceGroschwitz KR, Wu D, Osterfeld H, Ahrens R, Hogan SP. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2013; 304: G479 - G489.
dc.identifier.citedreferenceCenac N, et al. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol. 2004; 558: 913 - 925.
dc.identifier.citedreferenceJacob C, Yang P-C, Darmoul D, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem. 2005; 280: 31936 - 31948.
dc.identifier.citedreferenceZhou QiQi, Costinean S, Croce CM, et al. MicroRNA 29 targets nuclear factor-κB-repressing factor and Claudin 1 to increase intestinal permeability. Gastroenterology. 2015; 148: 158 - 169.
dc.identifier.citedreferenceWershil BK, Castagliuolo I, Pothoulakis C. Direct evidence of mast cell involvement in Clostridium difficile toxin A-induced enteritis in mice. Gastroenterology. 1998; 114: 956 - 964.
dc.identifier.citedreferenceMartínez C, Vicario M, Ramos L, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. 2012; 107: 736 - 746.
dc.identifier.citedreferenceShen Q, et al. Improving RhoA-mediated intestinal epithelial permeability by continuous blood purification in patients with severe acute pancreatitis. Int J Artif Organs. 2013; 36: 812 - 820.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.