Show simple item record

Context-dependent effects of shifting large herbivore assemblages on plant structure and diversity

dc.contributor.authorOrr, Devyn A.
dc.contributor.authorBui, An
dc.contributor.authorKlope, Maggie
dc.contributor.authorMcCullough, Ian M.
dc.contributor.authorLee, Michelle
dc.contributor.authorMotta, Carina
dc.contributor.authorMayorga, Isabella
dc.contributor.authorKonicek, Kelli
dc.contributor.authorYoung, Hillary S.
dc.date.accessioned2022-07-05T21:04:16Z
dc.date.available2023-07-05 17:04:14en
dc.date.available2022-07-05T21:04:16Z
dc.date.issued2022-06
dc.identifier.citationOrr, Devyn A.; Bui, An; Klope, Maggie; McCullough, Ian M.; Lee, Michelle; Motta, Carina; Mayorga, Isabella; Konicek, Kelli; Young, Hillary S. (2022). "Context-dependent effects of shifting large herbivore assemblages on plant structure and diversity." Journal of Ecology (6): 1312-1327.
dc.identifier.issn0022-0477
dc.identifier.issn1365-2745
dc.identifier.urihttps://hdl.handle.net/2027.42/173033
dc.description.abstractDespite wide recognition of the importance of anthropogenically driven changes in large herbivore communities—including both declines in wildlife and increases in livestock—there remain large gaps in our knowledge about the impacts of these changes on plant communities, particularly when combined with concurrent changes in climate. Considering these prominent forms of global change in tandem enables us to better understand controls on savanna vegetation structure and diversity under real-world conditions.We conducted a field experiment using complete and semi-permeable herbivore exclosures to explore the difference in plant communities among sites with wild herbivores only, with cattle in addition to wild herbivores, and with no large herbivores. To understand variation in effects across climatic contexts, the experiment was replicated at three locations along a topoclimatic gradient in California. Critically, this is the first such experiment to compare cattle and wildlife impacts along an environmental gradient within a single controlled experiment.Vegetation structure responded strongly to herbivore treatment regardless of climate. Relative to the isolated effects of wildlife, exclusion of all large herbivores generally increased structural components related to cover and above-ground biomass while the addition of cattle led to reductions in vegetation cover, litter, shading and standing biomass. Furthermore, wildlife had a consistent neutral or positive effect on plant diversity, while the effect of livestock addition was context dependent. Cattle had a neutral to strongly negative effect at low aridity, but a positive effect at high aridity. These results suggest that (a) herbivore effects can override climate effects on vegetation structure, (b) cattle addition can drive different effects on diversity and (c) herbivore effects on diversity are modulated by climate.Synthesis. Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth’s land area is managed for livestock and climate regimes are changing globally.Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth’s land area is managed for livestock and climate regimes are changing globally.
dc.publisherUniversity of California Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwildlife
dc.subject.otherplant–herbivore interactions
dc.subject.otherbiodiversity
dc.subject.othercattle
dc.subject.otherclimate
dc.subject.othercommunity structure
dc.subject.othercontext dependence
dc.subject.otherherbivory
dc.subject.otherlivestock
dc.titleContext-dependent effects of shifting large herbivore assemblages on plant structure and diversity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173033/1/jec13871.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173033/2/jec13871-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173033/3/jec13871_am.pdf
dc.identifier.doi10.1111/1365-2745.13871
dc.identifier.sourceJournal of Ecology
dc.identifier.citedreferenceOsem, Y., Perevolotsky, A. V. I., & Kigel, J. ( 2002 ). Grazing effect on diversity of annual plant communities in a semi-arid rangeland: Interactions with small-scale spatial and temporal variation in primary productivity. Journal of Ecology, 90, 936 – 946.
dc.identifier.citedreferenceOsem, Y., Perevolotsky, A. V. I., & Kigel, J. ( 2004 ). Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi-arid rangeland. Journal of Ecology, 92, 297 – 309.
dc.identifier.citedreferencePorensky, L. M., Wittman, S. E., Riginos, C., & Young, T. P. ( 2013 ). Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory. Oecologia, 173 ( 2 ), 591 – 602. https://doi.org/10.1007/s00442-013-2637-4
dc.identifier.citedreferencePrins, A. H., Nell, H. W., & Klinkhamer, P. G. L. ( 1992 ). Size-dependent root herbivory on Cynoglossum officinale. Oikos, 65 ( 3 ), 409 – 413.
dc.identifier.citedreferencePrins, H. H. T. ( 2000 ). Competition between wildlife and livestock in Africa. In Wildlife conservation by sustainable use (pp. 51 – 80 ). Springer. https://doi.org/10.1007/978-94-011-4012-6
dc.identifier.citedreferenceProulx, M., & Mazumder, A. ( 1998 ). Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology, 79 ( 8 ), 2581 – 2592.
dc.identifier.citedreferenceR Core Team. ( 2018 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
dc.identifier.citedreferenceRichter, C. J. ( 2015 ). Influence of functional traits, shrub neighbors, and habitat types on plant responses to herbivores. Sonoma State University.
dc.identifier.citedreferenceSitters, J., Wubs, E. R. J., Bakker, E. S., Crowther, T. W., Adler, P. B., Bagchi, S., … Seabloom, E. W. ( 2020 ). Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 26 ( 4 ), 2060 – 2071. https://doi.org/10.1111/gcb.15023
dc.identifier.citedreferenceSoofi, M., Ghoddousi, A., Zeppenfeld, T., Shokri, S., Soufi, M., Jafari, A., … Waltert, M. ( 2018 ). Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian forest. Iran. Biological Conservation, 217 ( June ), 377 – 382. https://doi.org/10.1016/j.biocon.2017.11.020
dc.identifier.citedreferenceSork, V. L., Davis, F. W., Westfall, R., Flint, A., Ikegami, M., Wang, H., & Grivet, D. ( 2010 ). Gene movement and genetic association with regional climate gradients in California valley oak ( Quercus lobata Née) in the face of climate change. Molecular Ecology, 19 ( 17 ), 3806 – 3823. https://doi.org/10.1111/j.1365-294X.2010.04726.x
dc.identifier.citedreferenceSpasojevic, M. J., & Suding, K. N. ( 2012 ). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100 ( 3 ), 652 – 661.
dc.identifier.citedreferenceStahlheber, K. A., & Antonio, C. M. D. ( 2013 ). Using livestock to manage plant composition: A meta-analysis of grazing in California Mediterranean grasslands. Biological Conservation, 157, 300 – 308. https://doi.org/10.1016/j.biocon.2012.09.008
dc.identifier.citedreferenceStevens, J. T., Safford, H. D., Harrison, S., & Latimer, A. M. ( 2015 ). Forest disturbance accelerates thermophilization of understory plant communities. Journal of Ecology, 103, 1253 – 1263. https://doi.org/10.1111/1365-2745.12426
dc.identifier.citedreferenceSuominen, O., Niemelä, J., Martikainen, P., Niemelä, P., & Kojola, I. ( 2003 ). Impact of reindeer grazing on ground-dwelling Carabidae and Curculionidae assemblages in Lapland. Ecography, 26 ( 4 ), 503 – 513. https://doi.org/10.1034/j.1600-0587.2003.03445.x
dc.identifier.citedreferenceTilman, D. ( 1982 ). Resource competition and community structure. Princeton University Press.
dc.identifier.citedreferenceTilman, D., HilleRisLambers, J., Harpole, S., Dybzinski, R., Fargione, J., Clark, C., & Lehman, C. ( 2004 ). Does metabolic theory apply to community ecology? It’s a matter of scale. Ecology, 85 ( July ), 1797 – 1799.
dc.identifier.citedreferenceTucker, C. M., Cadotte, M. W., Carvalho, S. B., Davies, T. J., Ferrier, S., Fritz, S. A., … Lanna, S. ( 2017 ). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92 ( 2 ), 698 – 715. https://doi.org/10.1111/brv.12252
dc.identifier.citedreferencevan der Plas, F., Howison, R. A., Mpanza, N., Cromsigt, J. P., & Olff, H. ( 2016 ). Different-sized grazers have distinctive effects on plant functional composition of an A frican savannah. Journal of Ecology, 104 ( 3 ), 864 – 875.
dc.identifier.citedreferenceVeblen, K. E., Porensky, L. M., Riginos, C., & Young, T. P. ( 2016 ). Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type. Ecological Applications, 26 ( 6 ), 1610 – 1623.
dc.identifier.citedreferenceVenail, P., Gross, K., Oakley, T. H., Narwani, A., Allan, E., Flombaum, P., … Cardinale, B. J. ( 2015 ). Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29 ( 5 ), 615 – 626. https://doi.org/10.1111/1365-2435.12432
dc.identifier.citedreferenceViolle, C., Garnier, E., Lecoeur, J., Roumet, C., Podeur, C., & Navas, A. B. M. ( 2009 ). Competition, traits and resource depletion in plant communities. Community Ecology, 160, 747 – 755. https://doi.org/10.1007/s00442-009-1333-x
dc.identifier.citedreferenceVitousek, P. M. ( 1986 ). Biological invasions and ecosystem properties: Can species make a difference? In Ecology of biological invasions of North America and Hawaii (pp. 163 – 176 ). Springer.
dc.identifier.citedreferenceVojtech, E., Turnbull, L. A., & Hector, A. ( 2007 ). Differences in light interception in grass monocultures predict short-term competitive outcomes under productive conditions. PLoS ONE, 6, e499. https://doi.org/10.1371/journal.pone.0000499
dc.identifier.citedreferenceWallisDeVries, M. F., Bakker, J. P., & Van Wieren, S. E. ( 1998 ). Grazing and conservation management. Springer Science & Business Media.
dc.identifier.citedreferenceWebb, C. O., & Donoghue, M. J. ( 2005 ). Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5 ( 1 ), 181 – 183. https://doi.org/10.1111/j.1471-8286.2004.00829.x
dc.identifier.citedreferenceWedin, D., & Tilman, D. ( 1993 ). Competition among grasses along a nitrogen gradient: Initial conditions and mechanisms of competition. Ecological Monographs, 63 ( 2 ), 199 – 229.
dc.identifier.citedreferenceWestern Regional Climate Center. ( 2015 ). Desert Research Institute. Retrieved from http://www.wrcc.dri.edu/
dc.identifier.citedreferenceYoung, H. S., Dirzo, R., Helgen, K. M., McCauley, D. J., Billeter, S. A., Kosoy, M. Y., … Dittmar, K. ( 2014 ). Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 19 ), 7036 – 7041. https://doi.org/10.1073/pnas.1404958111
dc.identifier.citedreferenceYoung, H. S., McCauley, D. J., Galetti, M., & Dirzo, R. ( 2016 ). Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics, 47 ( August ), 333 – 358. https://doi.org/10.1146/annurev-ecolsys-112414-054142
dc.identifier.citedreferenceYoung, H. S., Mccauley, D. J., Helgen, K. M., Goheen, J. R., Otárola-castillo, E., Palmer, T. M., … Dirzo, R. ( 2013 ). Effects of mammalian herbivore declines on plant communities: Observations and experiments in an African savanna. Journal of Ecology, 101, 1030 – 1041. https://doi.org/10.1111/1365-2745.12096
dc.identifier.citedreferenceYoung, T. P., Okello, B., Kinyua, D., & Palmer, T. M. ( 1997 ). KLEE: A long-term multi-species herbivore exclusion experiment in Laikipia, Kenya. African Journal of Range and Forage Science, 14, 92 – 104.
dc.identifier.citedreferenceZhu, M., Pan, Y., Huang, Z., & Xu, P. ( 2016 ). An alternative method to predict future weather data for building energy demand simulation under global climate change. Energy & Buildings, 113, 74 – 86. https://doi.org/10.1016/j.enbuild.2015.12.020
dc.identifier.citedreferenceZuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. ( 2009 ). Mixed effects models and extensions in ecology with R. Springer Science & Business Media. Retrieved from http://arxiv.org/abs/1305.6995
dc.identifier.citedreferenceAdler, P. B., & Lauenroth, W. K. ( 2000 ). Livestock exclusion increases the spatial heterogeneity of vegetation in Colorado shortgrass steppe. Applied Vegetation Science, 3 ( 2 ), 213 – 222. https://doi.org/10.2307/1479000
dc.identifier.citedreferenceAsner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., & Harris, T. ( 2004 ). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29, 261 – 299. https://doi.org/10.1146/annurev.energy.29.062403.102142
dc.identifier.citedreferenceAugustine, D. J., & McNaughton, S. J. ( 2006 ). Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems, 9 ( 8 ), 1242 – 1256. https://doi.org/10.1007/s10021-005-0020-y
dc.identifier.citedreferenceAugustine, D. J., Veblen, K. E., Goheen, J. R., Riginos, C., & Young, T. P. ( 2011 ). Pathways for positive cattle–wildlife interactions in semiarid rangelands. Smithsonian Contributions to Zoology, 632, 55 – 71. https://doi.org/10.5479/si.00810282.632.55
dc.identifier.citedreferenceBakker, E. S., Ritchie, M. E., & Olff, H. ( 2006 ). Herbivore impact on grassland diversity depends on habitat productivity and herbivore size herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecology Letters, 9, 780 – 788. https://doi.org/10.1111/j.1461-0248.2006.00925.x
dc.identifier.citedreferenceBaldwin, B. G., Goldman, D. H., Keil, D. J., Patterson, R., & Rosatti, T. J. ( 2012 ). The Jepson manual: Vascular plants of California. University of California Press.
dc.identifier.citedreferenceBanta, J. A., Stark, S. C., Stevens, M. H. H., Pendergast, T. H., IV, Baumert, A., & Carson, W. P. ( 2008 ). Light reduction predicts widespread patterns of dominance between asters and goldenrods. Plant Ecology, 199 ( 1 ), 65 – 67. https://doi.org/10.1007/s11258-008-9412-3
dc.identifier.citedreferenceBarnosky, A. D. ( 2008 ). Megafauna biomass tradeoff as a driver of quaternary and future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 105 ( Suppl 1 ), 11543 – 11548.
dc.identifier.citedreferenceBar-On, Y. M., Phillips, R., & Milo, R. ( 2018 ). The biomass distribution on earth. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 25 ), 6506 – 6511. https://doi.org/10.1073/pnas.1711842115
dc.identifier.citedreferenceBartolome, J. W., Barry, W. J., Griggs, T., & Hopkinson, P. ( 2007 ). Valley grassland. In M. Barbour, T. Keeler-Wolf, & A. A. Schoenherr (Eds.), Terrestrial vegetation of California ( 3rd ed., pp. 367 – 393 ). University of California Press. https://doi.org/10.1525/california/9780520249554.003.0014
dc.identifier.citedreferenceBartón, K. ( 2018 ). MuMIn: Multi-model inference. R package version 1.42. 1.
dc.identifier.citedreferenceBates, D., Kliegl, R., Vasishth, S., & Baayen, R. H. ( 2015 ). Parsimonious mixed models. ArXiv Preprint ArXiv:1506.04967.
dc.identifier.citedreferenceBerendse, F., Elberse, W. T., & Geerts, R. ( 1992 ). Competition and nitrogen loss from plants in grassland ecosystems. Ecology, 73 ( 1 ), 46 – 53.
dc.identifier.citedreferenceBerg, B. P., & Hudson, R. J. ( 1982 ). Elk, mule deer, and cattle: Functional interactions on foothills range in southwestern Albertafood, use of habitats. In Proceedings of the wildlife-livestock relationships symposium: Held at Coeur d’Alene, Idaho, April 20–22, 1981/sponsored by Department of Wildlife Resources, University of Idaho; [James M. peek, PD Dalke, editors]. Forest, Wildlife & Range Experiment Station, University of Idaho.
dc.identifier.citedreferenceBoone, R. B., Herrero, M., Conant, R. T., Sircely, J., & Thornton, P. K. ( 2018 ). Climate change impacts on selected global rangeland ecosystem services. Global Change Biology, 24 ( 3 ), 1 – 12. https://doi.org/10.1111/gcb.13995
dc.identifier.citedreferenceBorer, E. T., Seabloom, E. W., Gruner, D. S., & Harpole, W. S. ( 2014 ). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508 ( 7497 ), 517 – 520. https://doi.org/10.1038/nature13144.Rights
dc.identifier.citedreferenceBowker, M. A., Soliveres, S., & Maestre, F. T. ( 2010 ). Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology, 98 ( 3 ), 551 – 560.
dc.identifier.citedreferenceBrowning, D. M., & Archer, S. R. ( 2011 ). Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing. Ecological Applications, 21 ( 5 ), 1629 – 1642. https://doi.org/10.1890/10-0542.1
dc.identifier.citedreferenceBurkepile, D. E., Fynn, R. W. S., Thompson, D. I., Lemoine, N. P., Koerner, S. E., Eby, S., … Smith, M. D. ( 2017 ). Herbivore size matters for productivity–richness relationships in African savannas. Journal of Ecology, 105 ( 3 ), 674 – 686. https://doi.org/10.1111/1365-2745.12714
dc.identifier.citedreferenceBurkepile, D. E., & Parker, J. D. ( 2017 ). Recent advances in plant–herbivore interactions. F1000Research, 6 ( 119 ), 1 – 13. https://doi.org/10.12688/f1000research.10313.1
dc.identifier.citedreferenceCardinale, B. J. ( 2011 ). Biodiversity improves water quality through niche partitioning. Nature, 472 ( 7341 ), 86 – 89. https://doi.org/10.1038/nature09904
dc.identifier.citedreferenceCharles, G. K., Porensky, L. M., Riginos, C., Veblen, K. E., & Young, T. P. ( 2017 ). Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. Ecological Applications, 27 ( 1 ), 143 – 155. https://doi.org/10.1002/eap.1422
dc.identifier.citedreferenceCleland, E. E., Lind, E. M., Decrappeo, N. M., Delorenze, E., Wilkins, R. A., Adler, P. B., … Seabloom, E. W. ( 2019 ). Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems, 22, 1466 – 1477. https://doi.org/10.1007/s10021-019-00350-4
dc.identifier.citedreferenceCollen, B., Loh, J., Whitmee, S., Rae, L. M. C., Amin, R., & Baillie, J. E. M. ( 2009 ). Monitoring change in vertebrate abundance: The living planet index. Conservation Biology, 23 ( 2 ), 317 – 327. https://doi.org/10.1111/j.1523-1739.2008.01117.x
dc.identifier.citedreferenceCollins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M., & Steinauer, E. M. ( 1998 ). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280 ( May ), 745 – 747.
dc.identifier.citedreferenceCraigie, I. D., Baillie, J. E. M., Balmford, A., Carbone, C., Collen, B., Green, R. E., & Hutton, J. M. ( 2010 ). Large mammal population declines in Africa’s protected areas. Biological Conservation, 143 ( 9 ), 2221 – 2228. https://doi.org/10.1016/j.biocon.2010.06.007
dc.identifier.citedreferenceCrowther, T. W., Riggs, C., Lind, E. M., Borer, E. T., Seabloom, E. W., Hobbie, S. E., … Routh, D. ( 2019 ). Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 22, 936 – 945. https://doi.org/10.1111/ele.13258
dc.identifier.citedreferenceCuddington, K. ( 2011 ). Legacy effects: The persistent impact of ecological interactions. Biological Theory, 6 ( 3 ), 203 – 210. https://doi.org/10.1007/s13752-012-0027-5
dc.identifier.citedreferenceDavis, F. W., & Sweet, L. C. ( 2012 ). From mountain microclimates to the macroecology of tree species distributions in California. Cirmount, 6, 2 – 5.
dc.identifier.citedreferenceDavis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., … Maneta, M. P. ( 2019 ). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 13 ), 6193 – 6198. https://doi.org/10.1073/pnas.1815107116
dc.identifier.citedreferencede Haan, C., Steinfeld, H., & Blackburn, H. ( 1997 ). Livestock & the environment: Finding a balance. European Commission, Directorate-General for the Environment.
dc.identifier.citedreferenceDelgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., … Zaady, E. ( 2013 ). Decoupling of soil nutrient as a function of aridity in global drylands. Nature, 502 ( 7473 ), 672 – 676. https://doi.org/10.1038/nature12670
dc.identifier.citedreferenceDimitrakopoulos, P. G., & Schmid, B. ( 2004 ). Biodiversity effects increase linearly with biotope space. Ecology Letters, 7, 574 – 583. https://doi.org/10.1111/j.1461-0248.2004.00607.x
dc.identifier.citedreferenceDirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. ( 2014 ). Defaunation in the Anthropocene. Science, 345 ( 6195 ), 401 – 406. https://doi.org/10.1126/science.1251817
dc.identifier.citedreferenceDudney, J., Hallett, L. M., Larios, L., Farrer, E. C., Erica, N., Stein, C., & Suding, K. N. ( 2017 ). Lagging behind: Have we overlooked previous-year rainfall effects in annual grasslands? Journal of Ecology, 105, 484 – 495. https://doi.org/10.1111/1365-2745.12671
dc.identifier.citedreferenceEskelinen, A., & Virtanen, R. ( 2005 ). Local and regional processes in low-productive mountain plant communities: The roles of seed and microsite limitation in relation to grazing. Oikos, 110 ( 2 ), 360 – 368.
dc.identifier.citedreferenceFay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M. H., Bakker, J. D., Borer, E. T., … Yang, L. H. ( 2015 ). Grassland productivity limited by multiple nutrients. Nature Plants, 1 ( 7 ), 1 – 5.
dc.identifier.citedreferenceFirn, J., Nguyen, H., Schütz, M., & Risch, A. C. ( 2019 ). Leaf trait variability between and within subalpine grassland species differs depending on site conditions and herbivory. Proceedings of the Royal Society B: Biological Sciences, 286 ( 1907 ), 20190429.
dc.identifier.citedreferenceForbes, E. S., Cushman, J. H., Young, T. P., Klope, M., & Young, H. S. ( 2019 ). Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Functional Ecology, 33, 1597 – 1610. https://doi.org/10.1111/1365-2435.13376
dc.identifier.citedreferenceFrank, D., & Esper, J. ( 2005 ). Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia, 22, 107 – 121. https://doi.org/10.1016/j.dendro.2005.02.004
dc.identifier.citedreferenceGao, J., & Carmel, Y. ( 2020 ). A global meta-analysis of grazing effects on plant richness. Agriculture, Ecosystems & Environment, 302, 107072.
dc.identifier.citedreferenceGoheen, J. R., Palmer, T. M., Charles, G. K., Helgen, K. M., Kinyua, S. N., Maclean, J. E., … Pringle, R. M. ( 2013 ). Piecewise disassembly of a large-herbivore community across a rainfall gradient: The UHURU experiment. PLoS ONE, 8 ( 2 ), e55192. https://doi.org/10.1371/journal.pone.0055192
dc.identifier.citedreferenceGrime, J. P. ( 1973 ). Competitive exclusion in herbaceous vegetation. Nature, 242, 344 – 347. https://doi.org/10.1038/246421a0
dc.identifier.citedreferenceGritti, E. S., Smith, B., & Sykes, M. T. ( 2006 ). Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. Journal of Biogeography, 33, 145 – 157. https://doi.org/10.1111/j.1365-2699.2005.01377.x
dc.identifier.citedreferenceGrubb, P. J. ( 1977 ). The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52 ( 1 ), 107 – 145.
dc.identifier.citedreferenceHalekoh, U., & Højsgaard, S. ( 2014 ). A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models – The R package pbkrtest. Journal of Statistical Software, 59 ( 9 ), 1 – 30.
dc.identifier.citedreferenceHarpole, W. S., & Tilman, D. ( 2006 ). Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15 – 23. https://doi.org/10.1111/j.1461-0248.2005.00836.x
dc.identifier.citedreferenceHartig, F. ( 2018 ). DHARMa: Residual diagnostics for hierarchical multi-level. Mixed Regression Models.
dc.identifier.citedreferenceHilleRisLambers, J., Yelenik, S. G., Colman, B. P., & Levine, J. M. ( 2010 ). California annual grass invaders: The drivers or passengers of change? Journal of Ecology, 98 ( 5 ), 1147 – 1156. https://doi.org/10.1111/j.1365-2745.2010.01706.x
dc.identifier.citedreferenceHufkens, K., Keenan, T. F., Flanagan, L. B., Scott, R. L., Bernacchi, C. J., Joo, E., … Richardson, A. D. ( 2016 ). Productivity of north American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change, 6 ( 7 ), 710 – 714. https://doi.org/10.1038/nclimate2942
dc.identifier.citedreferenceHuisman, J., Jonker, R. R., Zonneveld, C., & Weissing, F. ( 1999 ). Competition for light between phytoplankton species: Experimental tests of mechanistic theory. Ecology, 80 ( 1 ), 211 – 222.
dc.identifier.citedreferenceHuisman, J., & Olff, H. ( 1998 ). Competition and facilitation in multispecies plant–herbivore systems of productive environments. Ecology Letters, 1 ( 1 ), 25 – 29.
dc.identifier.citedreferenceInouye, R. S., & Tilman, D. ( 1988 ). Convergence and divergence of old-field plant communities along experimental nitrogen gradients. Ecology, 69 ( 4 ), 995 – 1004.
dc.identifier.citedreferenceJia, S., Wang, X., Yuan, Z., Lin, F., Ye, J., Hao, Z., & Luskin, M. S. ( 2018 ). Global signal of top-down control of terrestrial plant communities by herbivores. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 24 ), 6237 – 6242. https://doi.org/10.1073/pnas.1707984115
dc.identifier.citedreferenceJutila, H. M., & Grace, J. B. ( 2002 ). Effects of disturbance on germination and seedling establishment in a coastal prairie grassland: A test of the competitive release hypothesis. Journal of Ecology, 90 ( 2 ), 291 – 302.
dc.identifier.citedreferenceKadmon, R. ( 1995 ). Plant competition along soil moisture gradients: A field with experiment the desert annual Stipa capensis. Journal of Ecology, 83 ( 2 ), 253 – 262.
dc.identifier.citedreferenceKasworm, W. F., Irby, L. R., & Pac, H. B. I. ( 1984 ). Diets of ungulates using winter ranges in northcentral Montana. Journal of Range Management, 37 ( 1 ), 67. https://doi.org/10.2307/3898827
dc.identifier.citedreferenceKeesing, F., Allan, B. F., Young, T. P., & Ostfeld, R. S. ( 2013 ). Effects of wildlife and cattle on ticks in Kenya. Ecological Applications, 23 ( 6 ), 1410 – 1418. Retrieved from http://www.life.illinois.edu/allan/docs/ Keesing et al. 2013 – Effects of wildlife and cattle on ticks in Kenya.Pdf
dc.identifier.citedreferenceKembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., … Webb, C. O. ( 2010 ). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26 ( 11 ), 1463 – 1464. https://doi.org/10.1093/bioinformatics/btq166
dc.identifier.citedreferenceKleinhesselink, A. R., Magnoli, S. M., & Cushman, J. H. ( 2014 ). Shrubs as ecosystem engineers across an environmental gradient: Effects on species richness and exotic plant invasion. Oecologia, 175 ( 4 ), 1277 – 1290. https://doi.org/10.1007/s00442-014-2972-0
dc.identifier.citedreferenceKnapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. L., Hartnett, D. C., Johnson, L. C., & Towne, E. G. ( 1999 ). The keystone role of bison in north American tallgrass prairie. Bioscience, 49 ( 1 ), 39 – 50. https://doi.org/10.2307/1313492
dc.identifier.citedreferenceKoerner, S. E., Burkepile, D. E., Fynn, R. W. S., Burns, C. E., Eby, S., Govender, N., … Smith, M. D. ( 2014 ). Plant community response to loss of large herbivores differs between north American and south African savanna grasslands. Ecology, 95 ( 4 ), 808 – 816. https://doi.org/10.1890/13-1828.1
dc.identifier.citedreferenceKoerner, S. E., Smith, M. D., Burkepile, D. E., Hanan, N. P., Avolio, M. L., Collins, S. L., … Baur, L. E. ( 2018 ). Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology & Evolution, 2 ( 12 ), 1925 – 1932. https://doi.org/10.1038/s41559-018-0696-y
dc.identifier.citedreferenceKueppers, L. M., Snyder, M. A., Sloan, L. C., Zavaleta, E. S., & Fulfrost, B. ( 2005 ). Modelled regional climate change and California endemic oak ranges. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 45 ), 16281 – 16286. https://doi.org/10.1073/pnas.0501427102
dc.identifier.citedreferenceLezama, F., Baeza, S., Altesor, A., Cesa, A., Chaneton, E. J., & Paruelo, J. M. ( 2014 ). Variation of grazing-induced vegetation changes across a large-scale productivity gradient. Journal of Vegetation Science, 25, 8 – 21. https://doi.org/10.1111/jvs.12053
dc.identifier.citedreferenceMack, M. C., & Antonio, C. M. D. ( 1998 ). Impacts of biological invasions on disturbance regimes. Trends in Ecology & Evolution, 13 ( 5 ), 195 – 198.
dc.identifier.citedreferenceMcCullough, I. M., Davis, F. W., Dingman, J. R., Flint, L. E., Flint, A. L., Serra-Diaz, J. M., … Franklin, J. ( 2016 ). High and dry: High elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 31, 1063 – 1075. https://doi.org/10.1007/s10980-015-0318-x
dc.identifier.citedreferenceMcNaughton, S. J. ( 1984 ). Grazing lawns: Animals in herds, plant form, and coevolution. American Society of Naturalists, 124 ( 6 ), 863 – 886. https://doi.org/10.1126/science.26.678.918
dc.identifier.citedreferenceMcNaughton, S. J., Oesterheld, M., Frank, D. A., & Williams, K. J. ( 1989 ). Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature, 341, 142 – 144.
dc.identifier.citedreferenceMenezes, B. S., Martins, F. R., Dantas Carvalho, E. C., Souza, B. C., Silveira, A. P., Loiola, M. I. B., & Araújo, F. S. ( 2020 ). Assembly rules in a resource gradient: Competition and abiotic filtering determine the structuring of plant communities in stressful environments. PloS One, 15 ( 3 ), e0230097.
dc.identifier.citedreferenceMilchunas, D. G., & Lauenroth, W. K. ( 1993 ). Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological archives M063-001. Ecological Monographs, 63 ( 4 ), 327 – 366.
dc.identifier.citedreferenceMilchunas, D. G., & Noy-Meir, I. ( 2002 ). Grazing refuges, external avoidance of herbivory and plant diversity. Oikos, 99 ( 1 ), 113 – 130.
dc.identifier.citedreferenceMilchunas, D. G., Sala, O. E., & Lauenroth, W. K. ( 1988 ). A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist, 132 ( 1 ), 87 – 106. https://doi.org/10.1086/284839
dc.identifier.citedreferenceMolinari, N. A., & D’Antonio, C. M. ( 2020 ). Where have all the wildflowers gone? The role of exotic grass thatch. Biological Invasions, 22 ( 3 ), 957 – 968.
dc.identifier.citedreferenceMwendera, E. J., Mohamed Saleem, M. A., & Dibabe, A. ( 1997 ). The effect of livestock grazing on surface runoff and soil erosion from sloping pasture lands in the Ethiopian highlands. Australian Journal of Experimental Agriculture, 37 ( 4 ), 421 – 430. https://doi.org/10.1071/EA96145
dc.identifier.citedreferenceMyers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B., & Kent, J. ( 2000 ). Biodiversity hotspots for conservation priorities. Nature, 403 ( 6772 ), 853 – 858. https://doi.org/10.1038/35002501
dc.identifier.citedreferenceOdadi, W. O., Karachi, M., Abdulrazak, S. A., & Young, T. P. ( 2011 ). African wild ungulates compete with or facilitate cattle depending on season. Science, 333 ( 6050 ), 1753 – 1755. https://doi.org/10.1126/science.1208468
dc.identifier.citedreferenceOksanen, A., Siles-Lucas, M., Karamon, J., Possenti, A., Conraths, F. J., Romig, T., … Casulli, A. ( 2016 ). The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: A systematic review and meta-analysis. Parasites & Vectors, 9 ( 1 ), 519. https://doi.org/10.1186/s13071-016-1746-4
dc.identifier.citedreferenceOlff, H., & Ritchie, M. E. ( 1998 ). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 13 ( 7 ), 261 – 265. https://doi.org/10.1016/S0169-5347(98)01364-0
dc.identifier.citedreferenceOrr, D., Bui, A., Klope, M., McCullough, I. M., Lee, M., Motta, C., Mayorga, I., Konicek, K., & Young, H. S. ( 2022 ). Context-dependent effects of shifting large herbivore assemblages on plant structure and diversity. Dryad Digital Repository, https://doi.org/10.25349/D94W48
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.