Show simple item record

Early Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode

dc.contributor.authorShi, Lili
dc.contributor.authorAnderson, Cassidy S.
dc.contributor.authorMishra, Lubhani
dc.contributor.authorQiao, Hong
dc.contributor.authorCanfield, Nathan
dc.contributor.authorXu, Yaobin
dc.contributor.authorWang, Chengqi
dc.contributor.authorJang, TaeJin
dc.contributor.authorYu, Zhaoxin
dc.contributor.authorFeng, Shuo
dc.contributor.authorLe, Phung M
dc.contributor.authorSubramanian, Venkat R.
dc.contributor.authorWang, Chongmin
dc.contributor.authorLiu, Jun
dc.contributor.authorXiao, Jie
dc.contributor.authorLu, Dongping
dc.date.accessioned2022-08-02T18:55:38Z
dc.date.available2023-08-02 14:55:36en
dc.date.available2022-08-02T18:55:38Z
dc.date.issued2022-07
dc.identifier.citationShi, Lili; Anderson, Cassidy S.; Mishra, Lubhani; Qiao, Hong; Canfield, Nathan; Xu, Yaobin; Wang, Chengqi; Jang, TaeJin; Yu, Zhaoxin; Feng, Shuo; Le, Phung M; Subramanian, Venkat R.; Wang, Chongmin; Liu, Jun; Xiao, Jie; Lu, Dongping (2022). "Early Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode." Advanced Science 9(21): n/a-n/a.
dc.identifier.issn2198-3844
dc.identifier.issn2198-3844
dc.identifier.urihttps://hdl.handle.net/2027.42/173067
dc.description.abstractLithium–sulfur (Li–S) batteries are one of the most promising next-generation energy storage technologies due to their high theoretical energy and low cost. However, Li–S cells with practically high energy still suffer from a very limited cycle life with reasons which remain unclear. Here, through cell study under practical conditions, it is proved that an internal short circuit (ISC) is a root cause of early cell failure and is ascribed to the crosstalk between the S cathode and Li anode. The cathode topography affects S reactions through influencing the local resistance and electrolyte distribution, particularly under lean electrolyte conditions. The inhomogeneous reactions of S cathodes are easily mirrored by the Li anodes, resulting in exaggerated localized Li plating/stripping, Li filament formation, and eventually cell ISC. Manipulating cathode topography is proven effective to extend the cell cycle life under practical conditions. The findings of this work shed new light on the electrode design for extending cycle life of high-energy Li–S cells, which are also applicable for other rechargeable Li or metal batteries.An active crosstalk occurs between the cathode and lithium (Li) anode, revealing an important factor influencing cycling of rechargeable Li batteries . The rough cathode surface is copied by the soft Li anode, resulting in inhomogeneous current density and exaggerated localized Li plating/stripping, causing an internal short circuit. Manipulation of cathode topography is required to extend the Li-cell cycle life.
dc.publisherJohn Wiley & Sons
dc.subject.othercharge failure
dc.subject.otherinternal short circuit
dc.subject.otherLi–S batteries
dc.subject.othersurface roughness
dc.subject.othertopography
dc.titleEarly Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173067/1/advs4011-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173067/2/advs4011_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173067/3/advs4011.pdf
dc.identifier.doi10.1002/advs.202201640
dc.identifier.sourceAdvanced Science
dc.identifier.citedreferenceD. P. Lv, J. M. Zheng, Q. Y. Li, X. Xie, S. Ferrara, Z. M. Nie, L. B. Mehdi, N. D. Browning, J. G. Zhang, G. L. Graff, J. Liu, J. Xiao, Adv. Energy Mater. 2015, 5, 8.
dc.identifier.citedreferenceJ. Xiao, Adv. Energy Mater. 2015, 5, 1501102.
dc.identifier.citedreferencea) X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500; b) Y. V. Mikhaylik, (Sion Power Corporation, USA), US 7354680, 2008.
dc.identifier.citedreferencea) D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694; b) J. Xiao, J. Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E. D. Walter, M. Hu, X. Deng, J. Feng, B. Y. Liaw, M. Gu, Z. D. Deng, D. Lu, S. Xu, C. Wang, J. Liu, Nano Lett. 2015, 15, 3309.
dc.identifier.citedreferencea) Y. Ma, H. Zhang, B. Wu, M. Wang, X. Li, H. Zhang, Sci. Rep. 2015, 5, 14949; b) W. J. Xue, Z. Shi, L. M. Suo, C. Wang, Z. A. Wang, H. Z. Wang, K. P. So, A. Maurano, D. W. Yu, Y. M. Chen, L. Qie, Z. Zhu, G. Y. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374.
dc.identifier.citedreferenceC. Monroe, J. Newman, J. Electrochem. Soc. 2003, 150, A1377.
dc.identifier.citedreferenceR. Kanno, Y. Kawamoto, Y. Takeda, S. Ohashi, N. Imanishi, O. Yamamoto, J. Electrochem. Soc. 1992, 139, 3397.
dc.identifier.citedreferencea) R. D. Rauh, S. B. Brummer, Electrochim. Acta 1977, 22, 75; b) I. Yoshimatsu, T. Hirai, J. Yamaki, J. Electrochem. Soc. 1988, 135, 2422; c) D. P. Lu, Y. Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. G. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu, J. Xiao, Adv. Energy Mater. 2015, 5, 1400993.
dc.identifier.citedreferencea) D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 2002, 148, 405; b) N. Gao, A. W. Abboud, G. S. Mattei, Z. Li, A. A. Corrao, C. Fang, B. Liaw, Y. S. Meng, P. G. Khalifah, E. J. Dufek, B. Li, Small Methods 2021, 5, 2000807.
dc.identifier.citedreferenceW. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.
dc.identifier.citedreferenceX. Guan, A. Wang, S. Liu, G. Li, F. Liang, Y. W. Yang, X. Liu, J. Luo, Small 2018, 14, 1801423.
dc.identifier.citedreferenceY. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J. G. Zhang, W. Xu, C. Wang, Nat. Nanotechnol. 2019, 14, 1042.
dc.identifier.citedreferenceJ. Chazalviel, Phys. Rev. A 1990, 42, 7355.
dc.identifier.citedreferencea) C. Monroe, J. Newman, J. Electrochem. Soc. 2005, 152, A396; b) C. T. Love, O. A. Baturina, K. E. Swider-Lyons, ECS Electrochem. Lett. 2015, 4, A24; c) P. Barai, K. Higa, V. Srinivasan, J. Electrochem. Soc. 2017, 164, A180; d) J. Electrochem. Soc. 2018, 165, A2654.
dc.identifier.citedreferencea) F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, J. Am. Chem. Soc. 2013, 135, 4450; b) D. A. Dornbusch, R. Hilton, S. D. Lohman, G. J. Suppes, J. Electrochem. Soc. 2015, 162, A262; c) J. D. Huang, J. D. Liu, J. He, M. G. Wu, S. A. Qi, H. P. Wang, F. Li, J. M. Ma, Angew. Chem., Int. Ed. 2021, 60, 20717; d) F. Li, J. He, J. D. Liu, M. G. Wu, Y. Y. Hou, H. P. Wang, S. H. Qi, Q. H. Liu, J. W. Hu, J. M. Ma, Angew. Chem., Int. Ed. 2021, 60, 6600; e) S. H. Qi, H. P. Wang, J. He, J. D. Liu, C. Y. Cui, M. G. Wu, F. Li, Y. Z. Feng, J. M. Ma, Sci. Bull. 2021, 66, 685.
dc.identifier.citedreferencea) N. Kumagai, Y. Kikuchi, K. Tanno, J. Appl. Electrochem. 1992, 22, 620; b) J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P. C. Hsu, J. Wang, H. M. Cheng, Y. Cui, Nat. Nanotechnol. 2017, 12, 993.
dc.identifier.citedreferencea) H. Lee, X. D. Ren, C. J. Niu, L. Yu, M. H. Engelhard, I. Cho, M. H. Ryou, H. S. Jin, H. T. Kim, J. Liu, W. Xu, J. G. Zhang, Adv. Funct. Mater. 2017, 27, 1704391; b) R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, J. Am. Chem. Soc. 2014, 136, 7395.
dc.identifier.citedreferenceG. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462.
dc.identifier.citedreferencea) H. Schneider, T. Weiss, C. Scordilis-Kelley, J. Maeyer, K. Leitner, H. J. Peng, R. Schmidt, J. Tomforde, Electrochim. Acta 2017, 243, 26; b) L. L. Shi, S. M. Bak, Z. Shadike, C. Q. Wang, C. J. Niu, P. Northrup, H. K. Lee, A. Y. Baranovskiy, C. S. Anderson, J. Qin, S. Feng, X. D. Ren, D. Y. Liu, X. Q. Yang, F. Gao, D. P. Lu, J. Xiao, J. Liu, Energy Environ. Sci. 2020, 13, 3620.
dc.identifier.citedreferenceC. Zu, L. Li, J. Guo, S. Wang, D. Fan, A. Manthiram, J. Phys. Chem. Lett. 2016, 7, 1392.
dc.identifier.citedreferencea) M. Rosso, T. Gobron, C. Brissot, J. N. Chazalviel, S. Lascaud, J. Power Sources 2001, 804, 804; b) A. W. Abboud, E. J. Dufek, B. Liaw, J. Electrochem. Soc. 2019, 166, A667.
dc.identifier.citedreferenceS. H. Yu, X. Huang, J. D. Brock, H. D. Abruna, J. Am. Chem. Soc. 2019, 141, 8441.
dc.identifier.citedreferencea) K. Nishikawa, T. Mori, T. Nishida, Y. Fukunaka, M. Rosso, J. Electroanal. Chem. 2011, 661, 84; b) K. Nishikawa, T. Mori, T. Nishida, Y. Fukunaka, M. Rosso, T. Homma, J. Electrochem. Soc. 2010, 157, A1212.
dc.identifier.citedreferencea) L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan, N. Koratkar, Science 2018, 359, 1513; b) M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J. M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 2006, 51, 5334.
dc.identifier.citedreferenceJ. Newman, K. E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, Hoboken 2012.
dc.identifier.citedreferencea) K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576; b) C. D. Parke, A. Subramaniam, S. Kolluri, D. T. Schwartz, V. R. Subramanian, J. Electrochem. Soc. 2020, 167, 163503.
dc.identifier.citedreferenceL. Mishra, A. Subramaniam, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts, V. R. Subramanian, J. Electrochem. Soc. 2021, 168, 092502.
dc.identifier.citedreferenceM. Tang, P. Albertus, J. Newman, J. Electrochem. Soc. 2009, 156, A390.
dc.identifier.citedreferenceR. Alkire, T. Bergh, R. L. Sani, J. Electrochem. Soc. 1978, 125, 1981.
dc.identifier.citedreferenceT. Zhang, M. Marinescu, S. Walus, G. J. Offer, Electrochim. Acta 2016, 219, 502.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.