Show simple item record

Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice

dc.contributor.authorJayarathne, Hashan S. M.
dc.contributor.authorDebarba, Lucas K.
dc.contributor.authorJaboro, Jacob J.
dc.contributor.authorGinsburg, Brett C.
dc.contributor.authorMiller, Richard A.
dc.contributor.authorSadagurski, Marianna
dc.date.accessioned2022-08-02T18:55:44Z
dc.date.available2023-08-02 14:55:39en
dc.date.available2022-08-02T18:55:44Z
dc.date.issued2022-07
dc.identifier.citationJayarathne, Hashan S. M.; Debarba, Lucas K.; Jaboro, Jacob J.; Ginsburg, Brett C.; Miller, Richard A.; Sadagurski, Marianna (2022). "Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice." Aging Cell (7): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/173068
dc.description.abstractThe aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti-diabetes drug, Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30-month-old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana-treated male and female mice showed significant reductions in age-associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana-treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30-month-old male but not female mice. Taken together, we demonstrate the sex-specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.Our findings demonstrate sex-specific neuroprotective effects of Canagliflozin treatment that are associated with reduced neuroinflammation, improved central insulin sensitivity, and locomotor activity in aged mice.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlongevity
dc.subject.othercanagliflozin
dc.subject.otherhippocampus
dc.subject.otherhypothalamus
dc.subject.otherinsulin
dc.subject.othermetabolism
dc.titleNeuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173068/1/ACEL13653-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173068/2/acel13653.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173068/3/acel13653_am.pdf
dc.identifier.doi10.1111/acel.13653
dc.identifier.sourceAging Cell
dc.identifier.citedreferencePapadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I., & Hulea, L. ( 2019 ). mTOR as a central regulator of lifespan and aging. F1000Research, 8, F1000.
dc.identifier.citedreferenceMilstein, J. L., & Ferris, H. A. ( 2021 ). The brain as an insulin-sensitive metabolic organ. Molecular Metabolism., 52, 101234.
dc.identifier.citedreferenceNaznin, F., Sakoda, H., Okada, T., Tsubouchi, H., Waise, T. M. Z., Arakawa, K., & Nakazato, M. ( 2017 ). Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. European Journal of Pharmacology, 794, 37 – 44.
dc.identifier.citedreferenceNguyen, T., Wen, S., Gong, M., Yuan, X., Xu, D., Wang, C., Jin, J., & Zhou, L. ( 2020 ). Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting SGLT-2 in mice. Diabetes, Metabolic Syndrome and Obesity, 13, 2781 – 2799.
dc.identifier.citedreferenceOhgaki, R., Wei, L., Yamada, K., Hara, T., Kuriyama, C., Okuda, S., Ueta, K., Shiotani, M., Nagamori, S., & Kanai, Y. ( 2016 ). Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2. The Journal of Pharmacology and Experimental Therapeutics, 358, 94 – 102.
dc.identifier.citedreferenceOsataphan, S., Macchi, C., Singhal, G., Chimene-Weiss, J., Sales, V., Kozuka, C., Dreyfuss, J. M., Pan, H., Tangcharoenpaisan, Y., Morningstar, J., Gerszten, R., & Patti, M. E. ( 2019 ). SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight, 4 ( 5 ), e123130.
dc.identifier.citedreferenceParikh, I., Guo, J., Chuang, K. H., Zhong, Y., Rempe, R. G., Hoffman, J. D., Armstrong, R., Bauer, B., Hartz, A. M., & Lin, A. L. ( 2016 ). Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY), 8, 2814 – 2826.
dc.identifier.citedreferencePerals Bertomeu, D., Griffin, A., Bartomeus, I., & Sol, D. ( 2017 ). Revisiting the open-field test: What does it really tell us about animal personality? Animal Behaviour, 123, 69 – 79.
dc.identifier.citedreferencePoppe, R., Karbach, U., Gambaryan, S., Wiesinger, H., Lutzenburg, M., Kraemer, M., Witte, O. W., & Koepsell, H. ( 1997 ). Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. Journal of Neurochemistry, 69, 84 – 94.
dc.identifier.citedreferenceSadagurski, M., Cady, G., & Miller, R. A. ( 2017 ). Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell, 16, 652 – 660.
dc.identifier.citedreferenceSadagurski, M., Cheng, Z., Rozzo, A., Palazzolo, I., Kelley, G. R., Dong, X., Krainc, D., & White, M. F. ( 2011 ). IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. The Journal of clinical investigation, 121, 4070 – 4081.
dc.identifier.citedreferenceSalameh, T. S., Bullock, K. M., Hujoel, I. A., Niehoff, M. L., Wolden-Hanson, T., Kim, J., Morley, J. E., Farr, S. A., & Banks, W. A. ( 2015 ). Central nervous system delivery of intranasal insulin: Mechanisms of uptake and effects on cognition. Journal of Alzheimer’s Disease, 47, 715 – 728.
dc.identifier.citedreferenceSchubert, M., Brazil, D. P., Burks, D. J., Kushner, J. A., Ye, J., Flint, C. L., Farhang-Fallah, J., Dikkes, P., Warot, X. M., Rio, C., Corfas, G., & White, M. F. ( 2003 ). Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. Journal of Neuroscience, 23, 7084 – 7092.
dc.identifier.citedreferenceSeibenhener, M. L., & Wooten, M. C. ( 2015 ). Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, 96, e52434.
dc.identifier.citedreferenceSelman, C., Lingard, S., Choudhury, A. I., Batterham, R. L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., Piper, M. D., Al-Qassab, H., Speakman, J. R., Carmignac, D., Robinson, I. C., Thornton, J. M., Gems, D., Partridge, L., & Withers, D. J. ( 2008 ). Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. The FASEB Journal, 22, 807 – 818.
dc.identifier.citedreferenceShoelson, S. E., Lee, J., & Goldfine, A. B. ( 2006 ). Inflammation and insulin resistance. The Journal of Clinical Investigation, 116, 1793 – 1801.
dc.identifier.citedreferenceShoji, H., Takao, K., Hattori, S., & Miyakawa, T. ( 2016 ). Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Molecular Brain, 9, 11.
dc.identifier.citedreferenceSierra, A., Gottfried-Blackmore, A. C., McEwen, B. S., & Bulloch, K. ( 2007 ). Microglia derived from aging mice exhibit an altered inflammatory profile. Glia, 55, 412 – 424.
dc.identifier.citedreferenceSpallone, V., & Valensi, P. ( 2021 ). SGLT2 inhibitors and the autonomic nervous system in diabetes: A promising challenge to better understand multiple target improvement. Diabetes & Metabolism, 47, 101224.
dc.identifier.citedreferenceStrong, R., Miller, R. A., Antebi, A., Astle, C. M., Bogue, M., Denzel, M. S., Fernandez, E., Flurkey, K., Hamilton, K. L., Lamming, D. W., Javors, M. A., de Magalhaes, J. P., Martinez, P. A., McCord, J. M., Miller, B. F., Muller, M., Nelson, J. F., Ndukum, J., Rainger, G. E., … Harrison, D. E. ( 2016 ). Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell, 15, 872 – 884.
dc.identifier.citedreferenceTaguchi, A., Wartschow, L. M., & White, M. F. ( 2007 ). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science, 317, 369 – 372.
dc.identifier.citedreferenceTahara, A., Takasu, T., Yokono, M., Imamura, M., & Kurosaki, E. ( 2016 ). Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. Journal of Pharmacological Sciences, 130, 159 – 169.
dc.identifier.citedreferenceTalbot, K., Wang, H.-Y., Kazi, H., Han, L.-Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., Arvanitakis, Z., Schneider, J. A., Wolf, B. A., Bennett, D. A., Trojanowski, J. Q., & Arnold, S. E. ( 2012 ). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of Clinical Investigation, 122, 1316 – 1338.
dc.identifier.citedreferenceTramunt, B., Smati, S., Grandgeorge, N., Lenfant, F., Arnal, J.-F., Montagner, A., & Gourdy, P. ( 2020 ). Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia, 63, 453 – 461.
dc.identifier.citedreferencevon Bernhardi, R., Eugenin-von Bernhardi, L., & Eugenin, J. ( 2015 ). Microglial cell dysregulation in brain aging and neurodegeneration. Frontiers in Aging Neuroscience, 7, 124.
dc.identifier.citedreferenceWang, Y., Fu, W. Y., Cheung, K., Hung, K. W., Chen, C., Geng, H., Yung, W. H., Qu, J. Y., Fu, A. K. Y., & Ip, N. Y. ( 2021 ). Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020810118.
dc.identifier.citedreferenceZhurova, E. A., Zhurov, V. V., Chopra, D., Stash, A. I., & Pinkerton, A. A. ( 2009 ). 17Alpha-estradiol x 1/2 H2O: Super-structural ordering, electronic properties, chemical bonding, and biological activity in comparison with other estrogens. Journal of the American Chemical Society, 131, 17260 – 17269.
dc.identifier.citedreferenceAlmeida-Suhett, C. P., Graham, A., Chen, Y., & Deuster, P. ( 2017 ). Behavioral changes in male mice fed a high-fat diet are associated with IL-1beta expression in specific brain regions. Physiology & Behavior, 169, 130 – 140.
dc.identifier.citedreferenceArnold, S. E., Arvanitakis, Z., Macauley-Rambach, S. L., Koenig, A. M., Wang, H. Y., Ahima, R. S., Craft, S., Gandy, S., Buettner, C., Stoeckel, L. E., Holtzman, D. M., & Nathan, D. M. ( 2018 ). Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nature Reviews. Neurology, 14, 168 – 181.
dc.identifier.citedreferenceBaar, E. L., Carbajal, K. A., Ong, I. M., & Lamming, D. W. ( 2016 ). Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell, 15, 155 – 166.
dc.identifier.citedreferenceBarrientos, R. M., Kitt, M. M., Watkins, L. R., & Maier, S. F. ( 2015 ). Neuroinflammation in the normal aging hippocampus. Neuroscience, 309, 84 – 99.
dc.identifier.citedreferenceBharath, L. P., Agrawal, M., McCambridge, G., Nicholas, D. A., Hasturk, H., Liu, J., Jiang, K., Liu, R., Guo, Z., Deeney, J., Apovian, C. M., Snyder-Cappione, J., Hawk, G. S., Fleeman, R. M., Pihl, R. M. F., Thompson, K., Belkina, A. C., Cui, L., Proctor, E. A., … Nikolajczyk, B. S. ( 2020 ). Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metabolism, 32, 44 – 55.e46.
dc.identifier.citedreferenceMohamed, D., Elshahed, M. S., Nasr, T., Aboutaleb, N., & Zakaria, O. ( 2019 ). Novel LC–MS/MS method for analysis of metformin and canagliflozin in human plasma: application to a pharmacokinetic study. BMC Chemistry., 13, 82.
dc.identifier.citedreferenceBomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H., Silverman, M. A., Kazi, H., Melo, H. M., McClean, P. L., Holscher, C., Arnold, S. E., Talbot, K., Klein, W. L., Munoz, D. P., Ferreira, S. T., & De Felice, F. G. ( 2012 ). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Abeta oligomers. The Journal of Clinical Investigation, 122, 1339 – 1353.
dc.identifier.citedreferenceCarlock, C., Wu, J., Shim, J., Moreno-Gonzalez, I., Pitcher, M. R., Hicks, J., Suzuki, A., Iwata, J., Quevado, J., & Lou, Y. ( 2017 ). Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. Translational Psychiatry, 7, e1164.
dc.identifier.citedreferenceClarke, L. E., Liddelow, S. A., Chakraborty, C., Munch, A. E., Heiman, M., & Barres, B. A. ( 2018 ). Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the United States of America, 115, E1896 – E1905.
dc.identifier.citedreferenceClaxton, A., Baker, L. D., Hanson, A., Trittschuh, E. H., Cholerton, B., Morgan, A., Callaghan, M., Arbuckle, M., Behl, C., & Craft, S. ( 2015 ). Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. Journal of Alzheimer’s Disease, 44, 897 – 906.
dc.identifier.citedreferenceClegg, D. J., Riedy, C. A., Smith, K. A. B., Benoit, S. C., & Woods, S. C. ( 2003 ). Differential sensitivity to central leptin and insulin in male and female rats. Diabetes, 52, 682 – 687.
dc.identifier.citedreferenceDeFronzo, R. A., Norton, L., & Abdul-Ghani, M. ( 2017 ). Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology, 13, 11 – 26.
dc.identifier.citedreferenceDevineni, D., & Polidori, D. ( 2015 ). Clinical pharmacokinetic, pharmacodynamic, and drug-drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clinical Pharmacokinetics, 54, 1027 – 1041.
dc.identifier.citedreferenceEnerson, B. E., & Drewes, L. R. ( 2006 ). The rat blood-brain barrier transcriptome. Journal of Cerebral Blood Flow and Metabolism, 26, 959 – 973.
dc.identifier.citedreferenceFan, X., Chan, O., Ding, Y., Zhu, W., Mastaitis, J., & Sherwin, R. ( 2015 ). Reduction in SGLT1 mRNA expression in the ventromedial hypothalamus improves the counterregulatory responses to hypoglycemia in recurrently hypoglycemic and diabetic rats. Diabetes, 64, 3564 – 3572.
dc.identifier.citedreferenceFeyissa, D. D., Aher, Y. D., Engidawork, E., Höger, H., Lubec, G., & Korz, V. ( 2017 ). Individual differences in male rats in a behavioral test battery: A multivariate statistical approach. Frontiers in Behavioral Neuroscience., 11, 26.
dc.identifier.citedreferenceFreude, S., Hettich, M. M., Schumann, C., Stohr, O., Koch, L., Kohler, C., Udelhoven, M., Leeser, U., Muller, M., Kubota, N., Kadowaki, T., Krone, W., Schroder, H., Bruning, J. C., & Schubert, M. ( 2009 ). Neuronal IGF-1 resistance reduces abeta accumulation and protects against premature death in a model of Alzheimer’s disease. The FASEB Journal, 23, 3315 – 3324.
dc.identifier.citedreferenceFreude, S., Schilbach, K., & Schubert, M. ( 2009 ). The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer’s disease: From model organisms to human disease. Current Alzheimer Research, 6, 213 – 223.
dc.identifier.citedreferenceFurman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. ( 2019 ). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25, 1822 – 1832.
dc.identifier.citedreferenceGarratt, M., Bower, B., Garcia, G. G., & Miller, R. A. ( 2017 ). Sex differences in lifespan extension with acarbose and 17-alpha estradiol: Gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell, 16, 1256 – 1266.
dc.identifier.citedreferenceGarratt, M., Leander, D., Pifer, K., Bower, B., Herrera, J. J., Day, S. M., Fiehn, O., Brooks, S. V., & Miller, R. A. ( 2019 ). 17-alpha estradiol ameliorates age-associated sarcopenia and improves late-life physical function in male mice but not in females or castrated males. Aging Cell, 18, e12920.
dc.identifier.citedreferenceGerasimenko, M., Lopatina, O., Shabalova, A. A., Cherepanov, S. M., Salmina, A. B., Yokoyama, S., Goto, H., Okamoto, H., Yamamoto, Y., Ishihara, K., & Higashida, H. ( 2020 ). Distinct physical condition and social behavior phenotypes of CD157 and CD38 knockout mice during aging. PLoS One, 15, e0244022.
dc.identifier.citedreferenceGłuchowska, K., Pliszka, M., & Szablewski, L. ( 2021 ). Expression of glucose transporters in human neurodegenerative diseases. Biochemical and Biophysical Research Communications., 540, 8 – 15.
dc.identifier.citedreferenceGonzalez-Freire, M., Diaz-Ruiz, A., Hauser, D., Martinez-Romero, J., Ferrucci, L., Bernier, M., & de Cabo, R. ( 2020 ). The road ahead for health and lifespan interventions. Ageing Research Reviews, 59, 101037.
dc.identifier.citedreferenceHallschmid, M., Benedict, C., Schultes, B., Fehm, H. L., Born, J., & Kern, W. ( 2004 ). Intranasal insulin reduces body fat in men but not in women. Diabetes, 53, 3024 – 3029.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Alavez, S., Astle, C. M., DiGiovanni, J., Fernandez, E., Flurkey, K., Garratt, M., Gelfond, J. A. L., Javors, M. A., Levi, M., Lithgow, G. J., Macchiarini, F., Nelson, J. F., Sukoff Rizzo, S. J., Slaga, T. J., Stearns, T., Wilkinson, J. E., & Miller, R. A. ( 2019 ). Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 18, e12898.
dc.identifier.citedreferenceNadon, N. L., Strong, R., Miller, R. A., Nelson, J., Javors, M., Sharp, Z. D., Peralba, J. M., & Harrison, D. E. ( 2008 ). Design of aging intervention studies: The NIA interventions testing program. Age (Dordrecht, Netherlands), 30, 187 – 199.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Allison, D. B., Ames, B. N., Astle, C. M., Atamna, H., Fernandez, E., Flurkey, K., Javors, M. A., Nadon, N. L., Nelson, J. F., Pletcher, S., Simpkins, J. W., Smith, D., Wilkinson, J. E., & Miller, R. A. ( 2014 ). Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 13, 273 – 282.
dc.identifier.citedreferenceHierro-Bujalance, C., Infante-Garcia, C., Del Marco, A., Herrera, M., Carranza-Naval, M. J., Suarez, J., Alves-Martinez, P., Lubian-Lopez, S., & Garcia-Alloza, M. ( 2020 ). Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimer’s Research & Therapy, 12, 40.
dc.identifier.citedreferenceJais, A., & Bruning, J. C. ( 2017 ). Hypothalamic inflammation in obesity and metabolic disease. The Journal of Clinical Investigation, 127, 24 – 32.
dc.identifier.citedreferenceKantzer, C. G., Boutin, C., Herzig, I. D., Wittwer, C., Reiss, S., Tiveron, M. C., Drewes, J., Rockel, T. D., Ohlig, S., Ninkovic, J., Cremer, H., Pennartz, S., Jungblut, M., & Bosio, A. ( 2017 ). Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia, 65, 990 – 1004.
dc.identifier.citedreferenceKeane, L., Antignano, I., Riechers, S.-P., Zollinger, R., Dumas, A. A., Offermann, N., Bernis, M. E., Russ, J., Graelmann, F., McCormick, P. N., Esser, J., Tejera, D., Nagano, A., Wang, J., Chelala, C., Biederbick, Y., Halle, A., Salomoni, P., Heneka, M. T., & Capasso, M. ( 2021 ). mTOR-dependent translation amplifies microglia priming in aging mice. The Journal of Clinical Investigation, 131, e132727.
dc.identifier.citedreferenceKillick, R., Scales, G., Leroy, K., Causevic, M., Hooper, C., Irvine, E. E., Choudhury, A. I., Drinkwater, L., Kerr, F., Al-Qassab, H., Stephenson, J., Yilmaz, Z., Giese, K. P., Brion, J. P., Withers, D. J., & Lovestone, S. ( 2009 ). Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochemical and Biophysical Research Communications, 386, 257 – 262.
dc.identifier.citedreferenceKodali, M., Attaluri, S., Madhu, L. N., Shuai, B., Upadhya, R., Gonzalez, J. J., Rao, X., & Shetty, A. K. ( 2021 ). Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell, 20, e13277.
dc.identifier.citedreferenceKoepsell, H. ( 2020 ). Glucose transporters in brain in health and disease. Pflügers Archiv, 472, 1299 – 1343.
dc.identifier.citedreferenceKomleva, Y., Chernykh, A., Lopatina, O., Gorina, Y., Lokteva, I., Salmina, A., & Gollasch, M. ( 2020 ). Inflamm-aging and brain insulin resistance: New insights and role of life-style strategies on cognitive and social determinants in aging and neurodegeneration. Frontiers in Neuroscience, 14, 618395.
dc.identifier.citedreferenceKullmann, S., Heni, M., Hallschmid, M., Fritsche, A., Preissl, H., & Haring, H. U. ( 2016 ). Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiological Reviews, 96, 1169 – 1209.
dc.identifier.citedreferenceKullmann, S., Hummel, J., Wagner, R., Dannecker, C., Vosseler, A., Fritsche, L., Veit, R., Kantartzis, K., Machann, J., Birkenfeld, A. L., Stefan, N., Haring, H. U., Peter, A., Preissl, H., Fritsche, A., & Heni, M. ( 2021 ). Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: A randomized, double-blind, placebo-controlled, phase 2 trial. Diabetes Care, 5 ( 2 ), 398 – 406.
dc.identifier.citedreferenceLam, K. S., Tiu, S. C., Tsang, M. W., Ip, T. P., & Tam, S. C. ( 1998 ). Acarbose in NIDDM patients with poor control on conventional oral agents. A 24-week placebo-controlled study. Diabetes Care, 21, 1154 – 1158.
dc.identifier.citedreferenceLamming, D. W., Ye, L., Katajisto, P., Goncalves, M. D., Saitoh, M., Stevens, D. M., Davis, J. G., Salmon, A. B., Richardson, A., Ahima, R. S., Guertin, D. A., Sabatini, D. M., & Baur, J. A. ( 2012 ). Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science, 335, 1638 – 1643.
dc.identifier.citedreferenceLiddelow, S., Guttenplan, K., Clarke, L., Bennett, F., Bohlen, C., Schirmer, L., Bennett, M., Munch, A., Chung, W.-S., Peterson, T., Wilton, D., Frouin, A., Napier, B., Panicker, N., Kumar, M., Buckwalter, M., Rowitch, D., Dawson, V., Dawson, T., & Barres, B. ( 2017 ). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541, 481 – 487.
dc.identifier.citedreferenceLimbad, C., Oron, T. R., Alimirah, F., Davalos, A. R., Tracy, T. E., Gan, L., Desprez, P. Y., & Campisi, J. ( 2020 ). Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One, 15, e0227887.
dc.identifier.citedreferenceLin, B., Koibuchi, N., Hasegawa, Y., Sueta, D., Toyama, K., Uekawa, K., Ma, M., Nakagawa, T., Kusaka, H., & Kim-Mitsuyama, S. ( 2014 ). Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovascular Diabetology, 13, 148.
dc.identifier.citedreferenceLiu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. ( 2011 ). Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. The Journal of Pathology, 225, 54 – 62.
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Allison, D. B., Bogue, M., Debarba, L., Diaz, V., Fernandez, E., Galecki, A., Garvey, W. T., Jayarathne, H., Kumar, N., Javors, M. A., Ladiges, W. C., Macchiarini, F., Nelson, J., Reifsnyder, P., Rosenthal, N. A., Sadagurski, M., Salmon, A. B., … Strong, R. ( 2020 ). Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight., 5, 21.
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Floyd, R. A., Flurkey, K., Hensley, K. L., Javors, M. A., Leeuwenburgh, C., Nelson, J. F., Ongini, E., Nadon, N. L., Warner, H. R., & Strong, R. ( 2007 ). An aging interventions testing program: Study design and interim report. Aging Cell, 6, 565 – 575.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.