Show simple item record

Dynamics of Pedogenic Carbonate Growth in the Tropical Domain of Myanmar

dc.contributor.authorLicht, A.
dc.contributor.authorKelson, J.
dc.contributor.authorBergel, S.
dc.contributor.authorSchauer, A.
dc.contributor.authorPetersen, S. V.
dc.contributor.authorCapirala, A.
dc.contributor.authorHuntington, K. W.
dc.contributor.authorDupont-Nivet, G.
dc.contributor.authorWin, Zaw
dc.contributor.authorAung, Day Wa
dc.date.accessioned2022-08-02T18:55:59Z
dc.date.available2023-08-02 14:55:55en
dc.date.available2022-08-02T18:55:59Z
dc.date.issued2022-07
dc.identifier.citationLicht, A.; Kelson, J.; Bergel, S.; Schauer, A.; Petersen, S. V.; Capirala, A.; Huntington, K. W.; Dupont-Nivet, G. ; Win, Zaw; Aung, Day Wa (2022). "Dynamics of Pedogenic Carbonate Growth in the Tropical Domain of Myanmar." Geochemistry, Geophysics, Geosystems 23(7): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/173075
dc.description.abstractPedogenic carbonate is widespread at mid latitudes where warm and dry conditions favor soil carbonate growth from spring to fall. The mechanisms and timing of pedogenic carbonate formation are more ambiguous in the tropical domain, where long periods of soil water saturation and high soil respiration enhance calcite dissolution. This paper provides stable carbon, oxygen and clumped isotope values from Quaternary and Miocene pedogenic carbonates in the tropical domain of Myanmar, in areas characterized by warm (>18°C) winters and annual rainfall up to 1,700 mm. We show that carbonate growth in Myanmar is delayed to the driest and coldest months of the year by sustained monsoonal rainfall from mid spring to late fall. The range of isotopic variability in Quaternary pedogenic carbonates can be solely explained by temporal changes of carbonate growth within the dry season, from winter to early spring. We propose that high soil moisture year-round in the tropical domain narrows carbonate growth to the driest months and makes it particularly sensitive to the seasonal distribution of rainfall. This sensitivity is also enabled by high winter temperatures, allowing carbonate growth to occur outside the warmest months of the year. This high sensitivity is expected to be more prominent in the geological record during times with higher temperatures and greater expansion of the tropical realm. Clumped isotope temperatures, δ13C and δ18O values of tropical pedogenic carbonates are impacted by changes of both rainfall seasonality and surface temperatures; this sensitivity can potentially be used to track past tropical rainfall distribution.Plain Language SummarySoil carbonates are the focus of many continental paleoenvironmental studies because their isotopic composition records many features of the local environment (such as the type and density of vegetation, annual or warm season temperatures, and aridity). Soil carbonates are commonly studied in temperate and arid areas; in those environments, carbonates form during warm months when soils dry. Soil carbonates are rarer but present in the tropical domain, where their isotopic systematics and formation processes have been barely studied. This study provides stable isotopic data from soil carbonates in the tropical monsoonal domain of Myanmar, which is characterized by warm (>18°C), dry winters and abundant summer rainfall. We show that these soil carbonates grow during the coldest months of the year and follow different dynamics and isotope systematics than those of temperate and arid areas. We show that high soil wetness and warm temperatures year-round make carbonate growth particularly sensitive to the seasonal distribution of rainfall in the tropical domain. This seasonal sensitivity complicates the interpretation of soil isotopic data from past tropical ecosystems. We suggest that isotopic data from tropical paleoenvironments can be used as a proxy to reconstruct past rainfall distribution instead of average (or summer) environmental features.Key PointsTropical soil carbonates under monsoonal rainfall grow in winter and early springThe cold-season bias in carbonate growth is promoted by warm (>15°C) winter temperatures and by high soil water content in summer and fallClumped isotope temperatures in tropical paleosols are likely impacted by changes of rainfall distribution
dc.publisherNASA National Snow and Ice Data Center Distributed Active Archive Center
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpedogenic carbonate
dc.subject.othermonsoon
dc.subject.otherclumped isotopes
dc.titleDynamics of Pedogenic Carbonate Growth in the Tropical Domain of Myanmar
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173075/1/ggge22850.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173075/2/ggge22850_am.pdf
dc.identifier.doi10.1029/2021GC009929
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferencePage, M., Licht, A., Dupont-Nivet, G., Meijer, N., Barbolini, N., Hoorn, C., et al. ( 2019 ). Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse. Geology, 47 ( 3 ), 203 – 206. https://doi.org/10.1130/g45480.1
dc.identifier.citedreferenceKhaing, T. T., Pasion, B. O., Lapuz, R. S., & Tomlinson, K. W. ( 2019 ). Determinants of composition, diversity and structure in a seasonally dry forest in Myanmar. Global Ecology and Conservation, 19, e00669. https://doi.org/10.1016/j.gecco.2019.e00669
dc.identifier.citedreferenceKim, S. T., & O’Neil, J. R. ( 1997 ). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61 ( 16 ), 3461 – 3475. https://doi.org/10.1016/s0016-7037(97)00169-5
dc.identifier.citedreferenceKohn, M. J. ( 2010 ). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences, 107 ( 46 ), 19691 – 19695. https://doi.org/10.1073/pnas.1004933107
dc.identifier.citedreferenceKume, T., Tanaka, N., Yoshifuji, N., Chatchai, T., Igarashi, Y., Suzuki, M., & Hashimoto, S. ( 2013 ). Soil respiration in response to year-to-year variations in rainfall in a tropical seasonal forest in northern Thailand. Ecohydrology, 6 ( 1 ), 134 – 141. https://doi.org/10.1002/eco.1253
dc.identifier.citedreferenceLicht, A., Dupont-Nivet, G., Meijer, N., Rugenstein, J. C., Schauer, A., Fiebig, J., et al. ( 2020 ). Decline of soil respiration in northeastern Tibet through the transition into the Oligocene icehouse. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110016. https://doi.org/10.1016/j.palaeo.2020.110016
dc.identifier.citedreferenceLiu, G., Li, X., Chiang, H. W., Cheng, H., Yuan, S., Chawchai, S., et al. ( 2020 ). On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Science Advances, 6 ( 7 ), eaay8189. https://doi.org/10.1126/sciadv.aay8189
dc.identifier.citedreferenceMeena, A., Hanief, M., Dinakaran, J., & Rao, K. S. ( 2020 ). Soil moisture controls the spatio-temporal pattern of soil respiration under different land use systems in a semi-arid ecosystem of Delhi, India. Ecological Processes, 9 ( 1 ), 1 – 13. https://doi.org/10.1186/s13717-020-0218-0
dc.identifier.citedreferenceMenne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., & Lawrimore, J. H. ( 2018 ). The global historical climatology network monthly temperature dataset, version 4. Journal of Climate, 31 ( 24 ), 9835 – 9854. https://doi.org/10.1175/jcli-d-18-0094.1
dc.identifier.citedreferenceMontanez, I. P. ( 2013 ). Modern soil system constraints on reconstructing deep-time atmospheric CO2. Geochimica et Cosmochimica Acta, 101, 57 – 75. https://doi.org/10.1016/j.gca.2012.10.012
dc.identifier.citedreferencePassey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J. M. ( 2010 ). High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences, 107 ( 25 ), 11245 – 11249. https://doi.org/10.1073/pnas.1001824107
dc.identifier.citedreferencePeters, N. A., Huntington, K. W., & Hoke, G. D. ( 2013 ). Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry. Earth and Planetary Science Letters, 361, 208 – 218. https://doi.org/10.1016/j.epsl.2012.10.024
dc.identifier.citedreferencePivnik, D. A., Nahm, J., Tucker, R. S., Smith, G. O., Nyein, K., Nyunt, M., & Maung, P. H. ( 1998 ). Polyphase deformation in a fore-arc/back-arc basin, Salin subbasin, Myanmar (Burma). AAPG Bulletin, 82 ( 10 ), 1837 – 1856.
dc.identifier.citedreferenceQuade, J., Breecker, D. O., Daëron, M., & Eiler, J. ( 2011 ). The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311 ( 2 ), 77 – 115. https://doi.org/10.2475/02.2011.01
dc.identifier.citedreferenceQuade, J., Eiler, J., Daeron, M., & Achyuthan, H. ( 2013 ). The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta, 105, 92 – 107. https://doi.org/10.1016/j.gca.2012.11.031
dc.identifier.citedreferenceRailsback, L. B. ( 2021 ). Pedogenic carbonate nodules from a forested region of humid climate in central Tennessee, USA, and their implications for interpretation of C3-C4 relationships and seasonality of meteoric precipitation from carbon isotope (δ13C) data. Catena, 200, 105169. https://doi.org/10.1016/j.catena.2021.105169
dc.identifier.citedreferenceReichle, R., De Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., & Liu, Q. ( 2018 ). SMAP L4 global 3-hourly 9 km EASE-grid surface and root zone soil moisture analysis update, version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/60HB8VIP2T8W. [Date Accessed].
dc.identifier.citedreferenceRetallack, G. J. ( 2005 ). Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33 ( 4 ), 333 – 336. https://doi.org/10.1130/g21263.1
dc.identifier.citedreferenceRomanek, C. S., Grossman, E. L., & Morse, J. W. ( 1992 ). Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56 ( 1 ), 419 – 430. https://doi.org/10.1016/0016-7037(92)90142-6
dc.identifier.citedreferenceRubio, V. E., & Detto, M. ( 2017 ). Spatiotemporal variability of soil respiration in a seasonal tropical forest. Ecology and Evolution, 7 ( 17 ), 7104 – 7116. https://doi.org/10.1002/ece3.3267
dc.identifier.citedreferenceSaraswat, R., Lea, D. W., Nigam, R., Mackensen, A., & Naik, D. K. ( 2013 ). Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth and Planetary Science Letters, 375, 166 – 175. https://doi.org/10.1016/j.epsl.2013.05.022
dc.identifier.citedreferenceSingh, L., & Singh, S. ( 1972 ). Chemical and morphological composition of kankar nodules in soils of the Vindahyan region of Mirzapur, India. Geoderma, 7 ( 3–4 ), 269 – 276. https://doi.org/10.1016/0016-7061(72)90010-9
dc.identifier.citedreferenceStamp, L. D. ( 1940 ). The irrawaddy river. The Geographical Journal, 95 ( 5 ), 329 – 352. https://doi.org/10.2307/1787471
dc.identifier.citedreferenceSteinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., et al. ( 2020 ). The Miocene: The future of the past. Paleoceanography and Paleoclimatology, e2020PA004037.
dc.identifier.citedreferenceToumoulin, A., Tardif, D., Donnadieu, Y., Licht, A., Ladant, J. B., Kunzmann, L., & Dupont-Nivet, G. ( 2021 ). Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse-A model-data comparison. Climate of the Past Discussions, 1 – 30. https://doi.org/10.5194/cp-2021-27
dc.identifier.citedreferenceVan Der Kaars, S., & Dam, R. ( 1997 ). Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years. Quaternary International, 37, 67 – 71. https://doi.org/10.1016/1040-6182(96)00002-x
dc.identifier.citedreferenceWesterweel, J., Licht, A., Cogné, N., Roperch, P., Dupont-Nivet, G., Kay Thi, M., et al. ( 2020 ). Burma terrane collision and northward indentation in the eastern himalayas recorded in the eocene-miocene Chindwin Basin (Myanmar). Tectonics, 39 ( 10 ), e2020TC006413. https://doi.org/10.1029/2020tc006413
dc.identifier.citedreferenceWing, S. L., & Greenwood, D. R. ( 1993 ). Fossils and fossil climate: The case for equable continental interiors in the Eocene. Philosophical transactions of the royal society of London. Series B: Biological Sciences, 341 ( 1297 ), 243 – 252.
dc.identifier.citedreferenceXiong, Z., Ding, L., Spicer, R. A., Farnsworth, A., Wang, X., Valdes, P. J., et al. ( 2020 ). The early Eocene rise of the Gonjo Basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters, 543, 116312. https://doi.org/10.1016/j.epsl.2020.116312
dc.identifier.citedreferenceAnderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., et al. ( 2021 ). A unified clumped isotope thermometer calibration (0.5–1100°C) using carbonate-based standardization. Geophysical Research Letters, 48 ( 7 ), e2020GL092069. https://doi.org/10.1029/2020gl092069
dc.identifier.citedreferenceAraguás-Araguás, L., Froehlich, K., & Rozanski, K. ( 1998 ). Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research, 103 ( D22 ), 28721 – 28742. https://doi.org/10.1029/98jd02582
dc.identifier.citedreferenceAung, L. L., Zin, E. E., Theingi, P., Elvera, N., Aung, P. P., Han, T. T., et al. ( 2017 ). Myanmar climate report, MET Report No. 9/2017.
dc.identifier.citedreferenceBelousov, A., Belousova, M., Zaw, K., Streck, M. J., Bindeman, I., Meffre, S., & Vasconcelos, P. ( 2018 ). Holocene eruptions of Mt. Popa, Myanmar: Volcanological evidence of the ongoing subduction of Indian plate along arakan trench. Journal of Volcanology and Geothermal Research, 360, 126 – 138. https://doi.org/10.1016/j.jvolgeores.2018.06.010
dc.identifier.citedreferenceBernasconi, S., Daëron, M., Bergmann, K., Bonifacie, M., Meckler, A. N., Affek, H., et al. ( 2021 ). InterCarb: A community effort to improve inter-laboratory standardization of the carbonate clumped isotope thermometer using carbonate standards.
dc.identifier.citedreferenceBettis, E. A., III, Milius, A. K., Carpenter, S. J., Larick, R., Zaim, Y., Rizal, Y., et al. ( 2009 ). Way out of Africa: Early pleistocene paleoenvironments inhabited by Homo erectus in sangiran, Java. Journal of Human Evolution, 56 ( 1 ), 11 – 24. https://doi.org/10.1016/j.jhevol.2008.09.003
dc.identifier.citedreferenceBeverly, E., Levin, N. E., Passey, B. H., Aron, P. G., Yarian, D. A., Page, M., & Pelletier, E. M. ( 2020 ). Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Space Science Open Archive ESSOAr, 567, 116952. https://doi.org/10.1016/j.epsl.2021.116952
dc.identifier.citedreferenceBotsyun, S., Sepulchre, P., Donnadieu, Y., Risi, C., Licht, A., & Rugenstein, J. K. C. ( 2019 ). Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363 ( 6430 ). https://doi.org/10.1126/science.aaq1436
dc.identifier.citedreferenceBreecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. The Geological Society of America Bulletin, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/b26413.1
dc.identifier.citedreferenceBreecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2010 ). Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for AD 2100. Proceedings of the National Academy of Sciences, 107 ( 2 ), 576 – 580. https://doi.org/10.1073/pnas.0902323106
dc.identifier.citedreferenceBroz, A., Retallack, G. J., Maxwell, T. M., & Silva, L. C. ( 2021 ). A record of vapour pressure deficit preserved in wood and soil across biomes. Scientific Reports, 11 ( 1 ), 1 – 12. https://doi.org/10.1038/s41598-020-80006-9
dc.identifier.citedreferenceBurgener, L., Huntington, K. W., Hoke, G. D., Schauer, A., Ringham, M. C., Latorre, C., & Díaz, F. P. ( 2016 ). Variations in soil carbonate formation and seasonal bias over> 4 km of relief in the Western Andes (30 S) revealed by clumped isotope thermometry. Earth and Planetary Science Letters, 441, 188 – 199. https://doi.org/10.1016/j.epsl.2016.02.033
dc.identifier.citedreferenceBurgener, L. K., Huntington, K. W., Sletten, R., Watkins, J. M., Quade, J., & Hallet, B. ( 2018 ). Clumped isotope constraints on equilibrium carbonate formation and kinetic isotope effects in freezing soils. Geochimica et Cosmochimica Acta, 235, 402 – 430. https://doi.org/10.1016/j.gca.2018.06.006
dc.identifier.citedreferenceCaves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., & Chamberlain, C. P. ( 2015 ). Role of the westerlies in central Asia climate over the cenozoic. Earth and Planetary Science Letters, 428, 33 – 43. https://doi.org/10.1016/j.epsl.2015.07.023
dc.identifier.citedreferenceCerling, T. E., & Quade, J. ( 1993 ). Stable carbon and oxygen isotopes in soil carbonates. Climate change in continental isotopic records. Geophysical Monograph, 78, 217 – 231.
dc.identifier.citedreferenceCerling, T. E., Solomon, D. K., Quade, J. A. Y., & Bowman, J. R. ( 1991 ). On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 55 ( 11 ), 3403 – 3405. https://doi.org/10.1016/0016-7037(91)90498-t
dc.identifier.citedreferenceClift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., & Calves, G. ( 2008 ). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1 ( 12 ), 875 – 880. https://doi.org/10.1038/ngeo351
dc.identifier.citedreferenceColin, C., Bertaux, J., Turpin, L., & Kissel, C. ( 2001 ). Dynamique de l’érosion dans le bassin versant de l’Irrawaddy au cours des deux derniers cycles climatiques (280–0 ka). Comptes Rendus de l’Academie des Sciences - Series IIA: Earth and Planetary Science, 332 ( 8 ), 483 – 489. https://doi.org/10.1016/s1251-8050(01)01565-8
dc.identifier.citedreferenceDiNezio, P. N., Tierney, J. E., Otto-Bliesner, B. L., Timmermann, A., Bhattacharya, T., Rosenbloom, N., & Brady, E. ( 2018 ). Glacial changes in tropical climate amplified by the Indian Ocean. Science Advances, 4 ( 12 ), eaat9658. https://doi.org/10.1126/sciadv.aat9658
dc.identifier.citedreferenceEhleringer, J. R., Lin, Z. F., Field, C. B., Sun, G. C., & Kuo, C. Y. ( 1987 ). Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia, 72 ( 1 ), 109 – 114. https://doi.org/10.1007/bf00385053
dc.identifier.citedreferenceFang, X., Dupont-Nivet, G., Wang, C., Song, C., Meng, Q., Zhang, W., et al. ( 2020 ). Revised chronology of central Tibet uplift (lunpola basin). Science Advances, 6 ( 50 ), eaba7298. https://doi.org/10.1126/sciadv.aba7298
dc.identifier.citedreferenceFick, S. E., & Hijmans, R. J. ( 2017 ). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 ( 12 ), 4302 – 4315. https://doi.org/10.1002/joc.5086
dc.identifier.citedreferenceFischer-Femal, B. J., & Bowen, G. J. ( 2021 ). Coupled carbon and oxygen isotope model for pedogenic carbonates. Geochimica et Cosmochimica Acta, 294, 126 – 144. https://doi.org/10.1016/j.gca.2020.10.022
dc.identifier.citedreferenceGallagher, T. M., Hren, M., & Sheldon, N. D. ( 2019 ). The effect of soil temperature seasonality on climate reconstructions from paleosols. American Journal of Science, 319 ( 7 ), 549 – 581. https://doi.org/10.2475/07.2019.02
dc.identifier.citedreferenceGallagher, T. M., & Sheldon, N. D. ( 2016 ). Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. Chemical Geology, 435, 79 – 91. https://doi.org/10.1016/j.chemgeo.2016.04.023
dc.identifier.citedreferenceGentis, N., Boura, A., & De Franceschi, D. ( 2019 ). Fossil wood from the Miocene of Myanmar: Application to the reconstruction of monsoonal paleoenvironments. Congrès Agora paleobotanica, Jul 2019, Lille, France. [note: a scientific paper based on this conference talk is in review at Geodiversitas and available on ESSOAR: Retrieved from https://www.essoar.org/doi/abs/10.1002/essoar.10506983.1 ]
dc.identifier.citedreferenceHanpattanakit, P., Leclerc, M. Y., Mcmillan, A. M., Limtong, P., Maeght, J. L., Panuthai, S., et al. ( 2015 ). Multiple timescale variations and controls of soil respiration in a tropical dry dipterocarp forest, Western Thailand. Plant and Soil, 390 ( 1 ), 167 – 181. https://doi.org/10.1007/s11104-015-2386-8
dc.identifier.citedreferenceHoke, G. D., Liu-Zeng, J., Hren, M. T., Wissink, G. K., & Garzione, C. N. ( 2014 ). Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 394, 270 – 278. https://doi.org/10.1016/j.epsl.2014.03.007
dc.identifier.citedreferenceHuth, T. E., Cerling, T. E., Marchetti, D. W., Bowling, D. R., Ellwein, A. L., & Passey, B. H. ( 2019 ). Seasonal bias in soil carbonate formation and its implications for interpreting high-resolution paleoarchives: Evidence from southern Utah. Journal of Geophysical Research: Biogeosciences, 124 ( 3 ), 616 – 632. https://doi.org/10.1029/2018jg004496
dc.identifier.citedreferenceIngalls, M., Rowley, D., Olack, G., Currie, B., Li, S., Schmidt, J., et al. ( 2018 ). Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering. GSA Bulletin, 130 ( 1–2 ), 307 – 330. https://doi.org/10.1130/b31723.1
dc.identifier.citedreferenceKelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher, T. M., Hoke, G. D., & Petersen, S. V. ( 2020 ). A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews, 234, 106259. https://doi.org/10.1016/j.quascirev.2020.106259
dc.identifier.citedreferenceKelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C., & Lechler, A. R. ( 2017 ). Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. Geochimica et Cosmochimica Acta, 197, 104 – 131. https://doi.org/10.1016/j.gca.2016.10.010
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.