Show simple item record

Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points

dc.contributor.authorHuang, Ran
dc.contributor.authorÖzdemir, Ş. K.
dc.contributor.authorLiao, Jie-Qiao
dc.contributor.authorMinganti, Fabrizio
dc.contributor.authorKuang, Le-Man
dc.contributor.authorNori, Franco
dc.contributor.authorJing, Hui
dc.date.accessioned2022-08-02T18:56:01Z
dc.date.available2023-08-02 14:56:00en
dc.date.available2022-08-02T18:56:01Z
dc.date.issued2022-07
dc.identifier.citationHuang, Ran; Özdemir, Ş. K. ; Liao, Jie-Qiao ; Minganti, Fabrizio; Kuang, Le-Man ; Nori, Franco; Jing, Hui (2022). "Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points." Laser & Photonics Reviews 16(7): n/a-n/a.
dc.identifier.issn1863-8880
dc.identifier.issn1863-8899
dc.identifier.urihttps://hdl.handle.net/2027.42/173076
dc.description.abstractNon-hermitian spectral degeneracies, known as exceptional points (EPs), feature the simultaneous coalescence of both eigenvalues and the associated eigenstates of a system. A host of intriguing EP effects and their applications have been revealed in the classical realm, such as loss-induced lasing, single-mode laser, and EP-enhanced sensing. Here, it is shown that a purely quantum effect, known as single-photon blockade, emerges in a Kerr microring resonator due to EP-induced asymmetric coupling between the optical modes and the nonlinearity-induced anharmonic energy-level spacing. A striking feature of this photon blockade is that it emerges at two-photon resonance which in Hermitian systems will only lead to photon-induced tunneling but not to photon blockade. By tuning the system towards or away from an EP, one can control quantum correlations, implying the potential use of their system for frequency tunable single-photon generation and an antibunching-to-bunching light switch. The work sheds new light on EP-engineered purely quantum effects, providing unique opportunities for making and utilizing various single-photon quantum EP devices.Chiral exceptional points (EPs) can emerge by controlling the relative angular position of two nanotips placed near an optical Kerr resonator. The interplay of EPs and Kerr nonlinearity leads to the counterintuitive effect of two-photon resonance antibunching. Also, frequency-tunable photon blockade can be achieved in such a quantum non-Hermitian device.
dc.publisherOptical Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.othersingle photons
dc.subject.otherquantum correlations
dc.subject.otherexceptional point
dc.subject.otherphoton blockade
dc.titleExceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173076/1/lpor202100430.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173076/2/lpor202100430_am.pdf
dc.identifier.doi10.1002/lpor.202100430
dc.identifier.sourceLaser & Photonics Reviews
dc.identifier.citedreferenceT. J. Arruda, R. Bachelard, J. Weiner, S. Slama, P. W. Courteille, Phys. Rev. A 2020, 101, 023828.
dc.identifier.citedreferenceH. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan, Science 2014, 346, 975.
dc.identifier.citedreferenceS. Assawaworrarit, X. Yu, S. Fan, Nature 2017, 546, 387.
dc.identifier.citedreferenceW. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang, Nature 2017, 548, 192.
dc.identifier.citedreferenceZ. Dong, Z. Li, F. Yang, C.-W. Qiu, J. S. Ho, Nat. Electron. 2019, 2, 335.
dc.identifier.citedreferenceQ. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, R. El-Ganainy, Phys. Rev. Lett. 2019, 122, 153902.
dc.identifier.citedreferenceY.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala, Nature 2019, 576, 65.
dc.identifier.citedreferenceM. P. Hokmabadi, A. Schumer, D. N. Christodoulides, M. Khajavikhan, Nature 2019, 576, 70.
dc.identifier.citedreferenceP.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, A. Alù, Nat. Electron. 2018, 1, 297.
dc.identifier.citedreferenceZ. Vernon, J. E. Sipe, Phys. Rev. A 2015, 92, 033840.
dc.identifier.citedreferenceH. Choi, M. Heuck, D. Englund, Phys. Rev. Lett. 2017, 118, 223605.
dc.identifier.citedreferenceJ. M. Hales, S.-H. Chi, T. Allen, S. Benis, N. Munera, J. W. Perry, D. McMorrow, D. J. Hagan, E. W. Van Stryland, in, CLEO: Science and Innovations, pp. JTu2A–59, Optical Society of America, Washington, DC 2018.
dc.identifier.citedreferenceM. Heuck, K. Jacobs, D. R. Englund, Phys. Rev. Lett. 2020, 124, 160501.
dc.identifier.citedreferenceM. Z. Alam, I. De Leon, R. W. Boyd, Science 2016, 352, 795.
dc.identifier.citedreferenceJ. A. Zielińska, M. W. Mitchell, Opt. Lett. 2017, 42, 5298.
dc.identifier.citedreferenceG. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, Nature 2013, 495, 205.
dc.identifier.citedreferenceX. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori, Phys. Rep. 2017, 718–719, 1.
dc.identifier.citedreferenceK. Xia, F. Nori, M. Xiao, Phys. Rev. Lett. 2018, 121, 203602.
dc.identifier.citedreferenceY.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. Lett. 2018, 120, 057202.
dc.identifier.citedreferenceG.-Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T.-F. Li, L. Tong, S.-Y. Zhu, F. Nori, J. Q. You, PRX Quantum 2021, 2, 020307.
dc.identifier.citedreferenceZ. R. Gong, H. Ian, Y.-x. Liu, C. P. Sun, F. Nori, Phys. Rev. A 2009, 80, 065801.
dc.identifier.citedreferenceX.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, Sci. Rep. 2013, 3, 2943.
dc.identifier.citedreferenceA. Hashemi, S. M. Rezaei, Ş. K. Özdemir, R. El-Ganainy, APL Photonics 2021, 6, 040803.
dc.identifier.citedreferenceF. Minganti, A. Miranowicz, R. W. Chhajlany, F. Nori, Phys. Rev. A 2019, 100, 062131.
dc.identifier.citedreferenceK. J. Vahala, Nature (London) 2003, 424, 839.
dc.identifier.citedreferenceS. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, H. J. Kimble, Phys. Rev. A 2005, 71, 013817.
dc.identifier.citedreferenceN. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, M. L. Gorodetsky, Opt. Lett. 2017, 42, 514.
dc.identifier.citedreferenceV. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, Y. Dumeige, Phys. Rev. Lett. 2016, 116, 133902.
dc.identifier.citedreferenceI. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. Pinkse, K. Murr, G. Rempe, Nat. Phys. 2008, 4, 382.
dc.identifier.citedreferenceX. T. Zou, L. Mandel, Phys. Rev. A 1990, 41, 475.
dc.identifier.citedreferenceA. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, A. A. Houck, Phys. Rev. Lett. 2011, 107, 053602.
dc.identifier.citedreferenceE. Z. Casalengua, J. C. L. Carreño, F. P. Laussy, E. d. Valle, Laser Photonics Rev. 2020, 14, 1900279.
dc.identifier.citedreferenceP. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller, Nature (London) 2017, 541, 473.
dc.identifier.citedreferenceM. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, Nat. Phys. 2011, 7, 907.
dc.identifier.citedreferenceM. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor, Nat. Photonics 2013, 7, 1001.
dc.identifier.citedreferenceB. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang, Science 2014, 346, 328.
dc.identifier.citedreferenceS. Soleymani, Q. Zhong, M. Mokim, S. Rotter, R. El-Ganainy, S. K. Özdemir, Nat. Commun. 2022, 13, 599.
dc.identifier.citedreferenceC. M. Bender, Rep. Prog. Phys. 2007, 70, 947.
dc.identifier.citedreferenceŞ. K. Özdemir, S. Rotter, F. Nori, L. Yang, Nat. Mater. 2019, 18, 783.
dc.identifier.citedreferenceR. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, Commun. Phys. 2019, 2, 37.
dc.identifier.citedreferenceL. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, A. Scherer, Science 2011, 333, 729.
dc.identifier.citedreferenceB. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang, Nat. Phys. 2014, 10, 394.
dc.identifier.citedreferenceB. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, L. Yang, Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 6845.
dc.identifier.citedreferenceQ. Zhong, S. Nelson, Ş. K. Özdemir, R. El-Ganainy, Opt. Lett. 2019, 44, 5242.
dc.identifier.citedreferenceC. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 2010, 6, 192.
dc.identifier.citedreferenceH. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori, Phys. Rev. Lett. 2014, 113, 053604.
dc.identifier.citedreferenceH. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, F. Nori, Sci. Rep. 2015, 5, 9663.
dc.identifier.citedreferenceH. Lü, C. Wang, L. Yang, H. Jing, Phys. Rev. Applied 2018, 10, 014006.
dc.identifier.citedreferenceH. Jing, Ş. K. Özdemir, H. Lü, F. Nori, Sci. Rep. 2017, 7, 3386.
dc.identifier.citedreferenceH. Zhang, F. Saif, Y. Jiao, H. Jing, Opt. Express 2018, 26, 25199.
dc.identifier.citedreferenceT.-X. Lu, H. Zhang, Q. Zhang, H. Jing, Phys. Rev. A 2021, 103, 063708.
dc.identifier.citedreferenceH. Xu, D. Mason, L. Jiang, J. Harris, Nature 2016, 537, 80.
dc.identifier.citedreferenceN. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, T. Kottos, Phys. Rev. Lett. 2013, 110, 234101.
dc.identifier.citedreferenceC. M. Bender, B. K. Berntson, D. Parker, E. Samuel, Am. J. Phys. 2013, 81, 173.
dc.identifier.citedreferenceX. Zhu, H. Ramezani, C. Shi, J. Zhu, X. Zhang, Phys. Rev. X 2014, 4, 031042.
dc.identifier.citedreferenceB.-I. Popa, S. A. Cummer, Nat. Commun. 2014, 5, 3398.
dc.identifier.citedreferenceR. Fleury, D. Sounas, A. Alu, Nat. Commun. 2015, 6, 5905.
dc.identifier.citedreferenceC. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, X. Zhang, Nat. Commun. 2016, 7, 11110.
dc.identifier.citedreferenceK. Ding, G. Ma, Z. Q. Zhang, C. T. Chan, Phys. Rev. Lett. 2018, 121, 085702.
dc.identifier.citedreferenceY. Li, Y.-G. Peng, L. Han, M.-A. Miri, W. Li, M. Xiao, X.-F. Zhu, J. Zhao, A. Alù, S. Fan, C.-W. Qiu, Science 2019, 364, 170.
dc.identifier.citedreferenceH. Zhang, R. Huang, S.-D. Zhang, Y. Li, C.-W. Qiu, F. Nori, H. Jing, Nano Lett. 2020, 20, 7594.
dc.identifier.citedreferenceH. Zhang, M. Peng, X.-W. Xu, H. Jing, Chin. Phys. B 2022, 31, 014215.
dc.identifier.citedreferenceL. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang, Science 2014, 346, 972.
dc.identifier.citedreferenceT. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya, Nature 2015, 526, 554.
dc.identifier.citedreferenceZ. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, M. N. Litchinitser, L. Feng, Science 2020, 368, 760.
dc.identifier.citedreferenceY. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong, J. F. Du, Science 2019, 364, 878.
dc.identifier.citedreferenceF. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel, A. Szameit, Nat. Photonics 2019, 13, 883.
dc.identifier.citedreferenceM. Naghiloo, M. Abbasi, Y. N. Joglekar, K. W. Murch, Nat. Phys. 2019, 15, 1232.
dc.identifier.citedreferenceW. Cao, X. Lu, X. Meng, J. Sun, H. Shen, Y. Xiao, Phys. Rev. Lett. 2020, 124, 030401.
dc.identifier.citedreferenceH. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, M.-H. Yung, Phys. Rev. Lett. 2020, 124, 053602.
dc.identifier.citedreferenceJ. Peřina, A. Lukš, J. K. Kalaga, W. Leoński, A. Miranowicz, Phys. Rev. A 2019, 100, 053820.
dc.identifier.citedreferenceA. Imamoḡlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 1997, 79, 1467.
dc.identifier.citedreferenceK. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, Nature) 2005, 436, 87.
dc.identifier.citedreferenceA. D. Greentree, C. Tahan, J. H. Cole, L. C. L. Hollenberg, Nat. Phys. 2006, 2, 856.
dc.identifier.citedreferenceA. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković, Nat. Phys. 2008, 4, 859.
dc.identifier.citedreferenceA. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoḡlu, Nat. Photonics 2012, 6, 93.
dc.identifier.citedreferenceK. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. Sánchez Muñoz, E. del Valle, F. P. Laussy, J. Vučković, Phys. Rev. Lett. 2015, 114, 233601.
dc.identifier.citedreferenceA. Miranowicz, J. Bajer, M. Paprzycka, Y.-x. Liu, A. M. Zagoskin, F. Nori, Phys. Rev. A 2014, 90, 033831.
dc.identifier.citedreferenceR. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing, Phys. Rev. Lett. 2018, 121, 153601.
dc.identifier.citedreferenceC. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff, Phys. Rev. Lett. 2011, 106, 243601.
dc.identifier.citedreferenceY.-X. Liu, X.-W. Xu, A. Miranowicz, F. Nori, Phys. Rev. A 2014, 89, 043818.
dc.identifier.citedreferenceP. Rabl, Phys. Rev. Lett. 2011, 107, 063601.
dc.identifier.citedreferenceJ.-Q. Liao, F. Nori, Phys. Rev. A 2013, 88, 023853.
dc.identifier.citedreferenceH. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, F. Nori, Phys. Rev. A 2015, 92, 033806.
dc.identifier.citedreferenceJ.-B. You, X. Xiong, P. Bai, Z.-K. Zhou, R.-M. Ma, W.-L. Yang, Y.-K. Lu, Y.-F. Xiao, C. E. Png, F. J. Garcia-Vidal, C.-W. Qiu, L. Wu, Nano Lett. 2020, 20, 4645.
dc.identifier.citedreferenceS. S. Shamailov, A. S. Parkins, M. J. Collett, H. J. Carmichael, Opt. Commun. 2010, 283, 766.
dc.identifier.citedreferenceA. Miranowicz, M. Paprzycka, Y.-X. Liu, J. Bajer, F. Nori, Phys. Rev. A 2013, 87, 023809.
dc.identifier.citedreferenceC. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe, Phys. Rev. Lett. 2017, 118, 133604.
dc.identifier.citedreferenceA. Kowalewska-Kudłaszyk, S. I. Abo, G. Chimczak, J. Peřina, F. Nori, A. Miranowicz, Phys. Rev. A 2019, 100, 053857.
dc.identifier.citedreferenceA. Delteil, T. Fink, A. Schade, S. Höfling, C. Schneider, A. İmamoğlu, Nat. Mater. 2019, 18, 219.
dc.identifier.citedreferenceT. C. H. Liew, V. Savona, Phys. Rev. Lett. 2010, 104, 183601.
dc.identifier.citedreferenceM. Bamba, A. Imamoḡlu, I. Carusotto, C. Ciuti, Phys. Rev. A 2011, 83, 021802.
dc.identifier.citedreferenceH. Flayac, V. Savona, Phys. Rev. A 2017, 96, 053810.
dc.identifier.citedreferenceH. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler, Phys. Rev. Lett. 2018, 121, 043601.
dc.identifier.citedreferenceC. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève, Phys. Rev. Lett. 2018, 121, 043602.
dc.identifier.citedreferenceB. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing, Photon. Res. 2019, 7, 630.
dc.identifier.citedreferenceŞ. K. Özdemir, A. Miranowicz, M. Koashi, N. Imoto, Phys. Rev. A 2001, 64, 063818.
dc.identifier.citedreferenceA. I. Lvovsky, J. Mlynek, Phys. Rev. Lett. 2002, 88, 250401.
dc.identifier.citedreferenceŞ. K. Özdemir, A. Miranowicz, M. Koashi, N. Imoto, Phys. Rev. A 2002, 66, 053809.
dc.identifier.citedreferenceS. Ferretti, D. Gerace, Phys. Rev. B 2012, 85, 033303.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.