Show simple item record

Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors

dc.contributor.authorZeng, Zhouxiaosong
dc.contributor.authorGe, Cuihuan
dc.contributor.authorBraun, Kai
dc.contributor.authorEberle, Martin
dc.contributor.authorWang, Yufan
dc.contributor.authorZheng, Biyuan
dc.contributor.authorZhu, Chenguang
dc.contributor.authorSun, Xingxia
dc.contributor.authorHuang, Lanyu
dc.contributor.authorLuo, Ziyu
dc.contributor.authorChen, Ying
dc.contributor.authorDuan, Huigao
dc.contributor.authorWang, Shuangyin
dc.contributor.authorLi, Dong
dc.contributor.authorGao, Fei
dc.contributor.authorPan, Anlian
dc.contributor.authorWang, Xiao
dc.date.accessioned2022-08-02T18:56:29Z
dc.date.available2023-08-02 14:56:27en
dc.date.available2022-08-02T18:56:29Z
dc.date.issued2022-07
dc.identifier.citationZeng, Zhouxiaosong; Ge, Cuihuan; Braun, Kai; Eberle, Martin; Wang, Yufan; Zheng, Biyuan; Zhu, Chenguang; Sun, Xingxia; Huang, Lanyu; Luo, Ziyu; Chen, Ying; Duan, Huigao; Wang, Shuangyin; Li, Dong; Gao, Fei; Pan, Anlian; Wang, Xiao (2022). "Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors." Advanced Functional Materials 32(30): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/173088
dc.description.abstractSelf-powered ultrafast 2D photodetectors have demonstrated great potential in imaging, sensing, and communication. Understanding the intrinsic ultrafast charge carrier generation and separation processes is essential for achieving high-performance devices. However, probing and manipulating the ultrafast photoresponse is limited either by the temporal resolution of the conventional methods or the required sophisticated device configurations. Here, van der Waals heterostructure photodetectors are constructed based on MoS2/WSe2 p–n and n–n junctions and manipulate the picosecond photoresponse by combining photovoltaic (PV) and photothermoelectric (PTE) effects. Taking time-resolved photocurrent (TRPC) measurements, a TRPC peak at zero time delay is observed with decay time down to 4 ps in the n–n junction device, in contrast to the TRPC dip in the p–n junction and pure WSe2 devices, indicating an opposite current polarity between PV and PTE. More importantly, with an ultrafast photocurrent modulation, a transition from a TRPC peak to a TRPC dip is realized, and detailed carrier transport dynamics are analyzed. This study provides a deeper understanding of the ultrafast photocurrent generation mechanism in van der Waals heterostructures and offers a new perspective in instruction for designing more efficient self-powered photodetectors.Comprehensive understanding of interaction between photovoltaic and photothermoelectric effects is demonstrated via a time-resolved photocurrent (TRPC) measurement technique. Compared to MoS2/multilayer WSe2 p–n junction having a conventional TRPC dip, MoS2/1L WSe2 n–n junction processes a distinct TRPC peak, which is attributed to the opposite polarity between photovoltaic and photothermoelectric currents and can be further modulated via an external bias.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervan der Waals heterostructures
dc.subject.otherphotodetectors
dc.subject.otherscanning photocurrent mapping
dc.subject.othertime-resolved photocurrent
dc.subject.other2D materials
dc.titleManipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173088/1/adfm202200973_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173088/2/adfm202200973-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173088/3/adfm202200973.pdf
dc.identifier.doi10.1002/adfm.202200973
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceF. Li, B. Y. Xu, W. Yang, Z. Y. Qi, C. Ma, Y. J. Wang, X. H. Zhang, Z. R. Luo, D. L. Liang, D. Li, Z. W. Li, A. L. Pan, Nano Res. 2020, 13, 1053.
dc.identifier.citedreferenceN. Flory, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, L. Novotny, Nat. Nanotechnol. 2020, 15, 118.
dc.identifier.citedreferenceA. Rogalski, Prog. Quantum Electron. 2003, 27, 59.
dc.identifier.citedreferenceA. Rogalski, Prog. Quantum Electron. 2012, 36, 342.
dc.identifier.citedreferenceM. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev. 2015, 44, 3691.
dc.identifier.citedreferenceM. S. Long, P. Wang, H. H. Fang, W. D. Hu, Adv. Funct. Mater. 2019, 29, 1803807.
dc.identifier.citedreferenceX. W. Lu, L. Sun, P. Jiang, X. H. Bao, Adv. Mater. 2019, 31, 1902044.
dc.identifier.citedreferenceJ. Fang, Z. Zhou, M. Xiao, Z. Lou, Z. Wei, G. Shen, Infomat 2020, 2, 291.
dc.identifier.citedreferenceM. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng, L. Zhang, W. Liao, Infomat 2021, 3, 362.
dc.identifier.citedreferenceF. Wu, Q. Li, P. Wang, H. Xia, Z. Wang, Y. Wang, M. Luo, L. Chen, F. S. Chen, J. S. Miao, X. S. Chen, W. Lu, C. X. Shan, A. L. Pan, X. Wu, W. C. Ren, D. Jariwala, W. D. Hu, Nat. Commun. 2019, 10, 4663.
dc.identifier.citedreferenceC. J. Zhou, S. Y. Zhang, Z. Lv, Z. C. Ma, C. Yu, Z. H. Feng, M. S. Chan, NPJ 2D Mater. Appl. 2020, 4, 46.
dc.identifier.citedreferenceX. K. Zhang, B. S. Liu, L. Gao, H. H. Yu, X. Z. Liu, J. L. Du, J. K. Xiao, Y. H. Liu, L. Gu, Q. L. Liao, Z. Kang, Z. Zhang, Y. Zhang, Nat. Commun. 2021, 12, 1522.
dc.identifier.citedreferenceS. Ghosh, A. Varghese, K. Thakar, S. Dhara, S. Lodha, Nat. Commun. 2021, 12, 3336.
dc.identifier.citedreferenceJ. Liu, F. N. Xia, D. Xiao, F. J. G. de Abajo, D. Sun, Nat. Mater. 2020, 19, 830.
dc.identifier.citedreferenceD. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, X. D. Xu, Nat. Nanotechnol. 2012, 7, 114.
dc.identifier.citedreferenceM. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, F. H. L. Koppens, Nat. Nanotechnol. 2016, 11, 42.
dc.identifier.citedreferenceK. T. Vogt, S. F. Shi, F. Wang, M. W. Graham, J. Phys. Chem. C 2020, 124, 15195.
dc.identifier.citedreferenceM. Massicotte, P. Schmidt, F. Vialla, K. Watanabe, T. Taniguchi, K. J. Tielrooij, F. H. L. Koppens, Nat. Commun. 2016, 7, 12174.
dc.identifier.citedreferenceZ. Wang, H. Xia, P. Wang, X. H. Zhou, C. S. Liu, Q. H. Zhang, F. Wang, M. L. Huang, S. Y. Chen, P. S. Wu, Y. F. Chen, J. F. Ye, S. Y. Huang, H. G. Yan, L. Gu, J. S. Miao, T. X. Li, X. S. Chen, W. Lu, P. Zhou, W. D. Hu, Adv. Mater. 2021, 33, 2104942.
dc.identifier.citedreferenceR. Cheng, D. H. Li, H. L. Zhou, C. Wang, A. X. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. F. Duan, Nano Lett. 2014, 14, 5590.
dc.identifier.citedreferenceC. H. Lee, G. H. Lee, A. M. van der Zande, W. C. Chen, Y. L. Li, M. Y. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, P. Kim, Nat. Nanotechnol. 2014, 9, 676.
dc.identifier.citedreferenceH. M. Zhu, J. Wang, Z. Z. Gong, Y. D. Kim, J. Hone, X. Y. Zhu, Nano Lett. 2017, 17, 3591.
dc.identifier.citedreferenceY. Chen, X. D. Wang, L. Huang, X. T. Wang, W. Jiang, Z. Wang, P. Wang, B. M. Wu, T. Lin, H. Shen, Z. M. Wei, W. D. Hu, X. J. Meng, J. H. Chu, J. L. Wang, Nat. Commun. 2021, 12, 4030.
dc.identifier.citedreferenceN. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, P. Jarillo-Herrero, Science 2011, 334, 648.
dc.identifier.citedreferenceJ. C. W. Song, M. S. Rudner, C. M. Marcus, L. S. Levitov, Nano Lett. 2011, 11, 4688.
dc.identifier.citedreferenceJ. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, P. H. Jiang, L. Sun, J. Shi, J. Mater. Chem. C 2016, 4, 991.
dc.identifier.citedreferenceM. Massicotte, F. Vialla, P. Schmidt, M. B. Lundeberg, S. Latini, S. Haastrup, M. Danovich, D. Davydovskaya, K. Watanabe, T. Taniguchi, V. I. Fal’ko, K. S. Thygesen, T. G. Pedersen, F. H. L. Koppens, Nat. Commun. 2018, 9, 1633.
dc.identifier.citedreferenceY. C. Kim, V. T. Nguyen, S. Lee, J. Y. Park, Y. H. Ahn, ACS Appl. Mater. Interfaces 2018, 10, 5771.
dc.identifier.citedreferenceZ. Zeng, K. Braun, C. Ge, M. Eberle, C. Zhu, X. Sun, X. Yang, J. Yi, D. Liang, Y. Wang, L. Huang, Z. Luo, D. Li, A. Pan, X. Wang, Fundam. Res. 2021, 9.
dc.identifier.citedreferenceT. Hong, B. Chamlagain, S. R. Hu, S. M. Weiss, Z. X. Zhou, Y. Q. Xu, ACS Nano 2015, 9, 5357.
dc.identifier.citedreferenceJ. R. Fang, D. Wang, C. T. DeVault, T. F. Chung, Y. P. Chen, A. Boltasseva, V. M. Shalaev, A. V. Kildishev, Nano Lett. 2017, 17, 57.
dc.identifier.citedreferenceY. L. Guo, L. W. Guo, K. Y. Zhou, J. W. Yang, Z. Xu, X. D. Bai, AIP Adv. 2021, 11, 085124.
dc.identifier.citedreferenceM. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, A. Castellanos-Gomez, Nano Lett. 2013, 13, 358.
dc.identifier.citedreferenceC. C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, L. J. Lauhon, J. Phys. Chem. Lett. 2013, 4, 2508.
dc.identifier.citedreferenceD. L. Li, Y. N. Gong, Y. X. Chen, J. M. Lin, Q. Khan, Y. P. Zhang, Y. Li, H. Zhang, H. P. Xie, Nano-Micro Lett. 2020, 12, 36.
dc.identifier.citedreferenceD. Wickramaratne, F. Zahid, R. K. Lake, J. Chem. Phys. 2014, 140, 124710.
dc.identifier.citedreferenceJ. Wu, H. Schmidt, K. K. Amara, X. F. Xu, G. Eda, B. Ozyilmaz, Nano Lett. 2014, 14, 2730.
dc.identifier.citedreferenceH. N. Wang, C. J. Zhang, F. Rana, Nano Lett. 2015, 15, 8204.
dc.identifier.citedreferenceQ. X. Qiu, Z. M. Huang, Adv. Mater. 2021, 33, 2008126.
dc.identifier.citedreferenceF. N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photonics 2014, 8, 899.
dc.identifier.citedreferenceC. Y. Liu, J. S. Guo, L. W. Yu, J. Li, M. Zhang, H. Li, Y. C. Shi, D. X. Dai, Light Sci. Appl. 2021, 10, 123.
dc.identifier.citedreferenceH. N. Wang, C. J. Zhang, W. M. Chan, S. Tiwari, F. Rana, Nat. Commun. 2015, 6, 8831.
dc.identifier.citedreferenceP. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, J. Leuthold, ACS Photonics 2019, 6, 154.
dc.identifier.citedreferenceF. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
dc.identifier.citedreferenceD. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, F. H. L. Koppens, Nature 2019, 573, 507.
dc.identifier.citedreferenceK. C. Zhu, C. Wen, A. A. Aljarb, F. Xue, X. M. Xu, V. Tung, X. X. Zhang, H. N. Alshareef, M. Lanza, Nat. Electron. 2021, 4, 775.
dc.identifier.citedreferenceX. Zhou, X. Z. Hu, S. S. Zhou, H. Y. Song, Q. Zhang, L. J. Pi, L. Li, H. Q. Li, J. T. Lu, T. Y. Zhai, Adv. Mater. 2018, 30, 1703286.
dc.identifier.citedreferenceF. K. Wang, P. Luo, Y. Zhang, Y. Huang, Q. F. Zhang, Y. Li, T. Y. Zhai, Sci. China Mater. 2020, 63, 1537.
dc.identifier.citedreferenceF. K. Wang, J. Wu, Y. Zhang, S. J. Yang, N. Zhang, H. Q. Li, T. Y. Zhai, Sci. China Mater. 2022, 65, 451.
dc.identifier.citedreferenceL. X. Liu, T. Y. Zhai, Infomat 2021, 3, 3.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.