Show simple item record

Movement and habitat use by smallmouth bass Micropterus dolomieu velox in a dynamic Ozark Highlands riverscape

dc.contributor.authorMiller, Andrew D.
dc.contributor.authorBrewer, Shannon K.
dc.date.accessioned2022-08-02T18:56:38Z
dc.date.available2023-08-02 14:56:36en
dc.date.available2022-08-02T18:56:38Z
dc.date.issued2022-07
dc.identifier.citationMiller, Andrew D.; Brewer, Shannon K. (2022). "Movement and habitat use by smallmouth bass Micropterus dolomieu velox in a dynamic Ozark Highlands riverscape." Journal of Fish Biology 101(1): 100-114.
dc.identifier.issn0022-1112
dc.identifier.issn1095-8649
dc.identifier.urihttps://hdl.handle.net/2027.42/173092
dc.description.abstractStream fish movement in response to changing resource availability and habitat needs is important for fish growth, survival and reproduction. The authors used radio telemetry to evaluate individual movements, daily movement rates, home ranges and habitat-use characteristics of adult (278–464 mm LT) Neosho smallmouth bass Micropterus dolomieu velox in three Ozark Highlands streams from June 2016 to February 2018. The authors quantified variation in movement and habitat use among seasons and streams and examined relations with select environmental cues (i.e., temperature and discharge), fish size and sex. Maximum movement distances were an order of magnitude greater in the larger Elk River (17.0 km) and Buffalo Creek (12.9 km) than in the smaller Sycamore Creek (1.71 km), were similar in both upstream and downstream directions and typically occurred during the spring. Most movement rates were ≤10 m day−1 in all streams and seasons, except for Elk River during spring. Ranking of linear mixed-effects models using AICc supported that movement rates were much greater in spring and increased with stream size. Spring movement rate increased with discharge and water temperature; only weak relationships were apparent during other seasons. Increased variation in water temperature had a small negative effect on movement rate. Home range size was highly variable among individuals, ranging 45–15,061 m (median: 773 m), and was not related to fish size, sex, season or stream. Although some fish moved between rivers, this study’s tagged fish did not use reservoir or associated interface habitat. Water temperatures used by this study’s tagged fish followed seasonal patterns but indicated the use of thermal refugia during summer and winter. Deeper-water habitats were used in Buffalo Creek and in winter across all study streams, whereas greater velocities used in the Elk River likely reflect the increased use of run habitats. Use of pool habitats predominated among tagged fish, particularly in smaller streams. The results of this study indicate considerable heterogeneity in movement and habitat use within and among lotic populations of Neosho smallmouth bass. These findings suggest that population-specific management may be appropriate and highlight the importance of natural flow conditions (i.e., spring high flows) and connected habitats for this endemic sport fish, particularly in smaller streams.
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.othermovement
dc.subject.otherNeosho smallmouth bass
dc.subject.otherOzark Highlands
dc.subject.otherradio telemetry
dc.subject.otherhome range
dc.subject.otherhabitat
dc.titleMovement and habitat use by smallmouth bass Micropterus dolomieu velox in a dynamic Ozark Highlands riverscape
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173092/1/jfb15076.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173092/2/jfb15076_am.pdf
dc.identifier.doi10.1111/jfb.15076
dc.identifier.sourceJournal of Fish Biology
dc.identifier.citedreferenceRoss, M. J., & Kleiner, C. F. ( 1982 ). Shielded-needle technique for surgically implanting radio-frequency transmitters in fish. The Progressive Fish-Culturist, 44, 41 – 43.
dc.identifier.citedreferenceStrahler, A. N. ( 1952 ). Hypsometric (area–altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117 – 1142.
dc.identifier.citedreferenceSugiura, N. ( 1978 ). Further analysis of the data by Akaike’s information criterion and the finite corrections. Communications in Statistics: Theory and Methods, 7, 13 – 26.
dc.identifier.citedreferenceTaylor, A. T., Long, J. M., Schwemm, M. R., & Brewer, S. K. ( 2018 ). Hybridization and genetic structure of Neosho Smallmouth Bass in the Ozark highlands. North American Journal of Fisheries Management, 38, 1226 – 1240.
dc.identifier.citedreferenceTaylor, A. T., Long, J. M., Tringali, M. D., & Barthel, B. L. ( 2019 ). Conservation of black bass diversity: An emerging management paradigm. Fisheries, 44, 20 – 36.
dc.identifier.citedreferenceTaylor, M. K., & Cooke, S. J. ( 2012 ). Meta-analyses of the effects of river flow on fish movement and activity. Environmental Reviews, 20, 211 – 219.
dc.identifier.citedreferenceThe Nature Conservancy, Ozarks Ecoregional Assessment Team. ( 2003 ). Ozarks ecoregional conservation assessment. Minneapolis, Minnesota: The Nature Conservancy Midwestern Resource Office.
dc.identifier.citedreferenceThorstad, E. B., Økland, F., & Heggberget, T. G. ( 2001 ). Are long term negative effects from external tags underestimated? – Fouling of an externally attached telemetry transmitter. Journal of Fish Biology, 59, 1092 – 1094.
dc.identifier.citedreferenceThurow, R. F. ( 2016 ). Life history of potamodromous fishes. In P. Morais & F. Daverat (Eds.), An introduction to fish migration (pp. 29 – 54 ). Boca Raton, Florida: CRC.
dc.identifier.citedreferenceTodd, B. L., & Rabeni, C. F. ( 1989 ). Movement and habitat use by stream-dwelling smallmouth bass. Transactions of the American Fisheries Society, 118, 229 – 242.
dc.identifier.citedreferenceUS Fish and Wildlife Service. ( 2018 ). 2016 National Survey of fishing, hunting, and wildlife-associated recreation. Washington, DC: US Department of the Interior and US Department of Commerce.
dc.identifier.citedreferenceVanArnum, C. J., Buynak, G. L., & Ross, J. R. ( 2004 ). Movement of smallmouth bass in Elkhorn Creek, Kentucky. North American Journal of Fisheries Management, 24, 311 – 315.
dc.identifier.citedreferenceVokoun, J. C., & Rabeni, C. F. ( 2005 ). Variation in an annual movement cycle of Flathead catfish within and between two Missouri watersheds. North American Journal of Fisheries Management, 25, 563 – 572.
dc.identifier.citedreferenceVonesh, E. F., Chinchilli, V. P., & Pu, K. W. ( 1996 ). Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics, 52, 572 – 587.
dc.identifier.citedreferenceWagner, T., Hayes, D. B., & Bremigan, M. T. ( 2006 ). Accounting for multilevel data structures in fisheries data using mixed models. Fisheries, 31, 180 – 187.
dc.identifier.citedreferenceWaldman, J., Wilson, K. A., Mather, M., & Snyder, N. P. ( 2016 ). A resilience approach can improve anadromous fish restoration. Fisheries, 41, 116 – 126.
dc.identifier.citedreferenceWalsh, M. G., Bjorgo, K. A., & Isely, J. J. ( 2000 ). Effects of implantation method and temperature on mortality and loss of simulated transmitters in hybrid striped Bass. Transactions of the American Fisheries Society, 129, 539 – 544.
dc.identifier.citedreferenceWarren, M. L., Jr. ( 2009 ). Centrarchid identification and natural history. In S. J. Cooke & D. P. Philipp (Eds.), Centrarchid fishes: Diversity, biology, and conservation (pp. 375 – 533 ). Chichester, England: Wiley.
dc.identifier.citedreferenceWebster, D. A. ( 1954 ). Smallmouth Bass, Micropterus dolomieui, in Cayuga Lake: Part I. Life history and environment. Ithaca, New York: Cornell University Agricultural Experiment Station, Memoir 327.
dc.identifier.citedreferenceWesthoff, J. T., Paukert, C., Ettinger-Dietzel, S., Dodd, H., & Siepker, M. ( 2016 ). Behavioral thermoregulation and bioenergetics of riverine smallmouth bass associated with ambient cold-period thermal refuge. Ecology of Freshwater Fish, 25, 72 – 85.
dc.identifier.citedreferenceWhite, G. C., & Garrott, R. A. ( 1990 ). Analysis of wildlife radio tracking data. New York: Harcourt Brace Jovanovich.
dc.identifier.citedreferenceWilliams, J. D., & Burgess, G. H. ( 1999 ). A new species of bass, Micropterus cataractae (Teleostei: Centrarchidae), from the Apalachicola River basin in Alabama, Florida, and Georgia. Bulletin of the Florida Museum of Natural History, 42, 80 – 114.
dc.identifier.citedreferenceYoung, M. K. ( 1994 ). Mobility of Brown trout in south-central Wyoming streams. Canadian Journal of Zoology, 72, 2078 – 2083.
dc.identifier.citedreferenceZhou, Y., Fox, G. A., Miller, R. B., Mollenhauer, R., & Brewer, S. ( 2018 ). Groundwater flux estimation in streams: A thermal equilibrium approach. Journal of Hydrology, 561, 822 – 832.
dc.identifier.citedreferenceSchlosser, I. J. ( 1991 ). Stream fish ecology: A landscape perspective. Bioscience, 41, 704 – 712.
dc.identifier.citedreferenceArnold, T. W. ( 2010 ). Uninformative parameters and model selection using Akaike’s information criterion. Journal of Wildlife Management, 74, 1175 – 1178.
dc.identifier.citedreferenceBain, M. B. ( 1999 ). Substrate. In M. B. Bain & N. J. Stevenson (Eds.), Aquatic habitat assessment: Common methods (pp. 95 – 103 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceBarthel, B. L., Cooke, S. J., Svec, J. H., Suski, C. D., Bunt, C. M., Phelan, F. J. S., & Philipp, D. P. ( 2008 ). Divergent life histories among smallmouth bass Micropterus dolomieu inhabiting a connected river-lake system. Journal of Fish Biology, 73, 829 – 852.
dc.identifier.citedreferenceBartoń, K. 2018. MuMIn: multi-model inference. R package version 1.40.4. Retrieved from https://cran.r-project.org/package=MuMIn
dc.identifier.citedreferenceBates, D., Maechler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1 – 48.
dc.identifier.citedreferenceBenitez, J.-P., & Ovidio, M. ( 2018 ). The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecology of Freshwater Fish, 27, 660 – 671.
dc.identifier.citedreferenceBirdsong, T. W., Allen, M. S., Claussen, J. E., Garrett, G. P., Grabowski, T. B., Graham, J., … Tringali, M. D. ( 2015 ). Native black bass initiative: Implementing watershed-scale approaches to conservation of endemic black bass and other native fishes in the southern United States. In M. D. Tringali, J. M. Long, T. W. Birdsong, & M. S. Allen (Eds.), Black bass diversity: Multidisciplinary science for conservation (pp. 363 – 378 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceBoxrucker, J., Echelle, A. A., & Van Den Bussche, R. A. ( 2004 ). Determining the degree of hybridization in the smallmouth bass population of broken Bow reservoir and the mountain Fork River. Oklahoma City, Oklahoma: Oklahoma Department of Wildlife Conservation, Final Report F-50-R, Project 19.
dc.identifier.citedreferenceBradford, M. J., & Heinonen, J. S. ( 2008 ). Low flows, instream flow needs and fish ecology in small streams. Canadian Water Resources Journal, 33, 165 – 180.
dc.identifier.citedreferenceBrewer, S. K. ( 2011 ). Patterns in young-of-year Smallmouth Bass microhabitat use in multiple stream segments with contrasting land uses. Fisheries Management and Ecology, 18, 506 – 512.
dc.identifier.citedreferenceBrewer, S. K. ( 2013 ). Groundwater influences on the distribution and abundance of riverine Smallmouth Bass, Micropterus dolomieu, in pasture landscapes of the midwestern USA. River Research and Applications, 29, 269 – 278.
dc.identifier.citedreferenceBrewer, S. K., & Long, J. M. ( 2015 ). Biology and ecology of Neosho Smallmouth Bass and the genetically distinct Ouachita lineage. In M. D. Tringali, J. M. Long, T. W. Birdsong, & M. S. Allen (Eds.), Black bass diversity: Multidisciplinary science for conservation (pp. 281 – 296 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceBunnell, D. B., & Isely, J. J. ( 1999 ). Influence of temperature on mortality and retention of simulated transmitters in rainbow trout. North American Journal of Fisheries Management, 19, 152 – 154.
dc.identifier.citedreferenceChapman, B. B., Skov, C., Hulthén, K., Brodersen, J., Nilsson, P. A., Hansson, L.-A., & Brönmark, C. ( 2012 ). Partial migration in fishes: Definitions, methodologies, and taxonomic distribution. Journal of Fish Biology, 81, 479 – 499.
dc.identifier.citedreferenceCoble, D. W. ( 1975 ). Smallmouth Bass. In H. Clepper (Ed.), Black bass biology and management (pp. 21 – 33 ). Washington D.C: Sport Fishing Institute.
dc.identifier.citedreferenceCooke, S. J., & Bunt, C. M. ( 2001 ). Assessment of internal and external antenna configurations of radio transmitters implanted in smallmouth bass. North American Journal of Fisheries Management, 21, 236 – 241.
dc.identifier.citedreferenceCooke, S. J., Martins, E. G., Struthers, D. P., Gutowsky, L. F. G., Power, M., Doka, S. E., … Krueger, C. C. ( 2016 ). A moving target—Incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environmental Monitoring and Assessment, 188, 239.
dc.identifier.citedreferenceDauwalter, D. C., & Fisher, W. L. ( 2007 ). Spawning chronology, nest site selection and nest success of smallmouth bass during benign streamflow conditions. American Midland Naturalist, 158, 60 – 78.
dc.identifier.citedreferenceDauwalter, D. C., & Fisher, W. L. ( 2008 ). Spatial and temporal patterns in stream habitat and smallmouth bass populations in eastern Oklahoma. Transactions of the American Fisheries Society, 137, 1072 – 1088.
dc.identifier.citedreferenceDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. ( 2013 ). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27 – 46.
dc.identifier.citedreferenceEttinger-Dietzel, S. A., Dodd, H. R., Westhoff, J. T., & Siepker, M. J. ( 2016 ). Movement and habitat selection patterns of smallmouth bass Micropterus dolomieu in an Ozark river. Journal of Freshwater Ecology, 31, 61 – 75.
dc.identifier.citedreferenceFausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. ( 2002 ). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. Bioscience, 52, 483 – 498.
dc.identifier.citedreferenceFrissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. ( 1986 ). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199 – 214.
dc.identifier.citedreferenceGerber, G. P., & Haynes, J. M. ( 1988 ). Movements and behavior of Smallmouth Bass, Micropterus dolomieui, and rock Bass, Ambloplites rupestris, in southcentral Lake Ontario and two tributaries. Journal of Freshwater Ecology, 4, 425 – 440.
dc.identifier.citedreferenceGordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. ( 2004 ). Stream hydrology: An introduction for ecologists ( 2nd ed. ). Chichester, England: Wiley.
dc.identifier.citedreferenceGowan, C., Young, M. K., Fausch, K. D., & Riley, S. C. ( 1994 ). Restricted movement in resident stream salmonids: A paradigm lost? Canadian Journal of Fisheries and Aquatic Sciences, 51, 2626 – 2637.
dc.identifier.citedreferenceGraham, R. J., & Orth, D. J. ( 1986 ). Effects of temperature and streamflow on time and duration of spawning by Smallmouth Bass. Transactions of the American Fisheries Society, 115, 693 – 702.
dc.identifier.citedreferenceGunn, J. C., Berkman, L. K., Koppelman, J., Taylor, A. T., Brewer, S., Long, J. M., & Eggert, L. S. ( 2020 ). Complex patterns of genetic and morphological differentiation in the Smallmouth Bass subspecies ( Micropterus dolomieu dolomieu and M. d. velox ) of the Central Interior Highlands. Conservation Genetics, 21, 891 – 904.
dc.identifier.citedreferenceHafs, A. W., Gagen, C. J., & Whalen, J. K. ( 2010 ). Smallmouth Bass summer habitat use, movement, and survival in response to low flow in the Illinois Bayou, Arkansas. North American Journal of Fisheries Management, 30, 604 – 612.
dc.identifier.citedreferenceHeim, K. C., Steeves, M. E., McMahon, T. E., Ertel, B. D., & Koel, T. M. ( 2018 ). Quantifying uncertainty in aquatic telemetry: Using received signal strength to estimate telemetry error. North American Journal of Fisheries Management, 38, 979 – 990.
dc.identifier.citedreferenceHerbert, M. E., & Gelwick, F. P. ( 2003 ). Spatial variation of headwater fish assemblages explained by hydrologic variability and upstream effects of impoundment. Copeia, 2003, 273 – 284.
dc.identifier.citedreferenceHill, J., & Grossman, G. D. ( 1987 ). Home range estimates for three North American stream fishes. Copeia, 1987, 376 – 380.
dc.identifier.citedreferenceHubbs, C. L., & Bailey, R. M. ( 1940 ). A revision of the black basses (Micropterus and Huro) with description of four new forms. Miscellaneous Publication 48, Museum of Zoology. Ann Arbor, Michigan: University of Michigan.
dc.identifier.citedreferenceHurst, T. P. ( 2007 ). Causes and consequences of winter mortality in fishes. Journal of Fish Biology, 71, 315 – 345.
dc.identifier.citedreferenceJepsen, N., Koed, A., Thorstad, E. B., & Baras, E. ( 2002 ). Surgical implantation of telemetry transmitters in fish: How much have we learned? Hydrobiologia, 483, 239 – 248.
dc.identifier.citedreferenceKoehn, J. D., Eiler, J. H., McKenzie, J. A., & O’Connor, W. G. ( 2012 ). An improved method for obtaining fine-scale location of radio tags when tracking by boat. In J. McKenzie, B. Parsons, A. C. Seitz, R. K. Kopf, M. Mesa, & Q. Phelps (Eds.), Advances in fish tagging and marking technology (pp. 379 – 384 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceKuechle, V. B., & Kuechle, P. J. ( 2012 ). Radio telemetry in fresh water: The basics. In N. S. Adams, J. W. Beeman, & J. H. Eiler (Eds.), Telemetry techniques: A user guide for fisheries research (pp. 91 – 137 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceLanghurst, R. W., & Schoenike, D. L. ( 1990 ). Seasonal migration of smallmouth bass in the embarrass and wolf Rivers, Wisconsin. North American Journal of Fisheries Management, 10, 224 – 227.
dc.identifier.citedreferenceLeasure, D. R., Magoulick, D. D., & Longing, S. D. ( 2016 ). Natural flow regimes of the Ozark-Ouachita Interior Highlands region. River Research and Applications, 32, 18 – 35.
dc.identifier.citedreferenceLucas, M. C., & Baras, E. ( 2001 ). Migration of freshwater fishes. Oxford, England: Blackwell.
dc.identifier.citedreferenceLyons, J., & Kanehl, P. ( 2002 ). Seasonal movements of smallmouth bass in streams. In D. P. Philipp & M. S. Ridgway (Eds.), Black bass: Ecology, conservation, and management (pp. 149 – 160 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceMacRae, P. S. D., & Jackson, D. A. ( 2001 ). The influence of Smallmouth bass ( Micropterus dolomieu ) predation and habitat complexity on the structure of littoral zone fish assemblages. Canadian Journal of Fisheries and Aquatic Sciences, 58, 342 – 351.
dc.identifier.citedreferenceMartin, J. H. ( 2017 ). Neosho Smallmouth Bass movement, spawning, and associated environmental conditions in a seasonally discontinuous stream: The Illinois Bayou, Arkansas. MS thesis. Russellville, Arkansas: Arkansas Tech University.
dc.identifier.citedreferenceMcCune, B., & Grace, J. B. ( 2002 ). Analysis of ecological communities. Gleneden Beach, Oregon: MjM Software Design.
dc.identifier.citedreferenceMiller, A. D., & Brewer, S. K. ( 2021 ). Riverscape nesting dynamics of Neosho Smallmouth Bass: To cluster or not to cluster? Diversity and Distributions, 27, 1005 – 1018.
dc.identifier.citedreferenceMunther, G. L. ( 1970 ). Movement and distribution of Smallmouth Bass in the middle Snake River. Transactions of the American Fisheries Society, 99, 44 – 53.
dc.identifier.citedreferenceNagrodski, A., Raby, G. D., Hasler, C. T., Taylor, M. K., & Cooke, S. J. ( 2012 ). Fish stranding in freshwater systems: Sources, consequences, and mitigation. Journal of Environmental Management, 103, 133 – 141.
dc.identifier.citedreferenceNakagawa, S., Johnson, P. C. D., & Schielzeth, H. ( 2017 ). The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14, 20170213.
dc.identifier.citedreferenceNigh, T. A., and W. A. Schroeder. 2002. Atlas of Missouri ecoregions. Missouri Department of Conservation. Retrieved from https://www.nrc.gov/docs/ML0923/ML092360302.pdf
dc.identifier.citedreferenceOtis, D. L., & White, G. C. ( 1999 ). Autocorrelation of location estimates and the analysis of radiotracking data. Journal of Wildlife Management, 63, 1039 – 1044.
dc.identifier.citedreferencePelicice, F. M., & Agostinho, A. A. ( 2008 ). Fish-passage facilities as ecological traps in large Neotropical rivers. Conservation Biology, 22, 180 – 188.
dc.identifier.citedreferencePelicice, F. M., Pompeu, P. S., & Agostinho, A. A. ( 2015 ). Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16, 697 – 715.
dc.identifier.citedreferencePert, E. J., Orth, D. J., & Sabo, M. J. ( 2002 ). Lotic-dwelling age-0 smallmouth bass as both resource specialists and generalists: Reconciling disparate literature reports. In D. P. Philipp & M. S. Ridgway (Eds.), Black bass: Ecology, conservation, and management (pp. 185 – 190 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferencePeterson, J. T., & Rabeni, C. F. ( 1996 ). Natural thermal refugia for temperate warmwater stream fishes. North American Journal of Fisheries Management, 16, 738 – 756.
dc.identifier.citedreferencePörtner, H. O., & Peck, M. A. ( 2010 ). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77, 1745 – 1779.
dc.identifier.citedreferencePower, M. E., Matthews, W. J., & Stewart, A. J. ( 1985 ). Grazing minnows, piscivorous bass, and stream algae: Dynamics of a strong interaction. Ecology, 66, 1448 – 1456.
dc.identifier.citedreferenceProbst, W. E., Rabeni, C. F., Covington, W. G., & Marteney, R. E. ( 1984 ). Resource use by stream-dwelling rock Bass and smallmouth bass. Transactions of the American Fisheries Society, 113, 283 – 294.
dc.identifier.citedreferenceQuinn, J., B. Wagner, and S. Filipek. 2004. Characteristics of black bass populations in the rivers and streams of Arkansas. Arkansas Game and Fish Commission, Stream Fisheries Program Report STP2004-01, Little Rock, Arkansas.
dc.identifier.citedreferenceR Core Team. ( 2018 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRabeni, C. F., & Jacobson, R. B. ( 1993 ). The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams. Freshwater Biology, 29, 211 – 220.
dc.identifier.citedreferenceRadinger, J., Essl, F., Hölker, F., Horký, P., Slavík, O., & Wolter, C. ( 2017 ). The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Global Change Biology, 23, 4970 – 4986.
dc.identifier.citedreferenceRadinger, J., & Wolter, C. ( 2014 ). Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 15, 456 – 473.
dc.identifier.citedreferenceRahel, F. J. ( 2007 ). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology, 52, 696 – 710.
dc.identifier.citedreferenceRasmussen, J. E., & Belk, M. C. ( 2017 ). Individual movement of stream fishes: Linking ecological drivers with evolutionary processes. Reviews in Fisheries Science & Aquaculture, 25, 70 – 83.
dc.identifier.citedreferenceRobbins, W. H., & MacCrimmon, H. R. ( 1977 ). Vital statistics and migratory patterns of a potamodromous stock of smallmouth bass, Micropterus dolomieui. Journal of the Fisheries Research Board of Canada, 34, 142 – 147.
dc.identifier.citedreferenceRodríguez, M. ( 2002 ). Restricted movement in stream fish: The paradigm is incomplete, not lost. Ecology, 83, 1 – 13.
dc.identifier.citedreferenceRubenson, E. S., & Olden, J. D. ( 2017 ). Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia, 184, 453 – 467.
dc.identifier.citedreferenceSchall, M. K., Wertz, T., Smith, G. D., Blazer, V. S., & Wagner, T. ( 2019 ). Movement dynamics of Smallmouth Bass in a large river-tributary system. Fisheries Management and Ecology, 26, 590 – 599.
dc.identifier.citedreferenceSchwarz, C. J., & Arnason, A. N. ( 1990 ). Use of tag-recovery information in migration and movement studies. In N. C. Parker, A. E. Giorgi, R. C. Heidinger, D. B. Jester, Jr., E. D. Prince, & G. A. Winans (Eds.), Fish-marking techniques (pp. 588 – 603 ). Bethesda, Maryland: American Fisheries Society.
dc.identifier.citedreferenceSkalski, G. T., & Gilliam, J. F. ( 2000 ). Modeling diffusive spread in a heterogeneous population: A movement study with stream fish. Ecology, 81, 1685 – 1700.
dc.identifier.citedreferenceStark, W. J., & Echelle, A. A. ( 1998 ). Genetic structure and systematics of smallmouth bass, with emphasis on interior highlands populations. Transactions of the American Fisheries Society, 127, 393 – 416.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.