Show simple item record

Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation

dc.contributor.authorQin, Qin
dc.contributor.authorAlsop, David C.
dc.contributor.authorBolar, Divya S.
dc.contributor.authorHernandez-Garcia, Luis
dc.contributor.authorMeakin, James
dc.contributor.authorLiu, Dapeng
dc.contributor.authorNayak, Krishna S.
dc.contributor.authorSchmid, Sophie
dc.contributor.authorOsch, Matthias J. P.
dc.contributor.authorWong, Eric C.
dc.contributor.authorWoods, Joseph G.
dc.contributor.authorZaharchuk, Greg
dc.contributor.authorZhao, Moss Y.
dc.contributor.authorZun, Zungho
dc.contributor.authorGuo, Jia
dc.date.accessioned2022-08-02T18:56:41Z
dc.date.available2023-11-02 14:56:39en
dc.date.available2022-08-02T18:56:41Z
dc.date.issued2022-10
dc.identifier.citationQin, Qin; Alsop, David C.; Bolar, Divya S.; Hernandez-Garcia, Luis ; Meakin, James; Liu, Dapeng; Nayak, Krishna S.; Schmid, Sophie; Osch, Matthias J. P.; Wong, Eric C.; Woods, Joseph G.; Zaharchuk, Greg; Zhao, Moss Y.; Zun, Zungho; Guo, Jia (2022). "Velocity- selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation." Magnetic Resonance in Medicine 88(4): 1528-1547.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/173093
dc.description.abstractThis review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervelocity selective arterial spin labeling
dc.subject.otherperfusion
dc.subject.othercerebral blood flow
dc.subject.otherarterial transit delay
dc.subject.otherarterial spin labeling
dc.subject.othervelocity selectivity
dc.titleVelocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173093/1/mrm29371_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173093/2/mrm29371.pdf
dc.identifier.doi10.1002/mrm.29371
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceSafian RD, Textor SC. Renal-artery stenosis. N Engl J Med. 2001; 344: 431 - 442.
dc.identifier.citedreferenceWu WC, Wong EC. Feasibility of velocity selective arterial spin labeling in functional MRI. J Cerebr Blood F Met. 2007; 27: 831 - 838.
dc.identifier.citedreferenceBones IK, Franklin SL, Harteveld AA, et al. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med. 2021; 86: 131 - 142.
dc.identifier.citedreferenceNery F, Buchanan CE, Harteveld AA, et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA. 2020; 33: 141 - 161.
dc.identifier.citedreferenceJao TR, Nayak KS. Demonstration of velocity selective myocardial arterial spin labeling perfusion imaging in humans. Magn Reson Med. 2018; 80: 272 - 278.
dc.identifier.citedreferenceZun ZH, Zaharchuk G, Andescavage NN, Donofrio MT, Limperopoulos C. Non-invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity-selective arterial spin labeled MRI. Sci Rep UK. 2017; 7:16126.
dc.identifier.citedreferenceZun ZH, Limperopoulos C. Placental perfusion imaging using velocity-selective arterial spin labeling. Magn Reson Med. 2018; 80: 1036 - 1047.
dc.identifier.citedreferenceHarteveld AA, Hutter J, Franklin SL, et al. Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Magn Reson Med. 2020; 84: 1828 - 1843.
dc.identifier.citedreferenceHutter J, Harteveld AA, Jackson LH, et al. Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med. 2020; 83: 549 - 560.
dc.identifier.citedreferenceMai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging. 1999; 9: 483 - 487.
dc.identifier.citedreferenceBolar DS, Levin DL, Hopkins SR, et al. Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med. 2006; 55: 1308 - 1317.
dc.identifier.citedreferenceHenderson AC, Prisk GK, Levin DL, Hopkins SR, Buxton RB. Characterizing pulmonary blood flow distribution measured using arterial spin labeling. NMR Biomed. 2009; 22: 1025 - 1035.
dc.identifier.citedreferenceGuo J, Wong EC. Pulmonary blood flow measurement using velocity-selective arterial spin labeling at 3.0T. Proceedings of the Annual Meeting of ISMRM; 2013: 6823; Salt Lake City, Utah, USA.
dc.identifier.citedreferenceSirol M, Itskovich VV, Mani V, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004; 109: 2890 - 2896.
dc.identifier.citedreferenceKoktzoglou I, Li D. Diffusion-prepared segmented steady-state free precession: application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson. 2007; 9: 33 - 42.
dc.identifier.citedreferenceWang J, Yarnykh VL, Yuan C. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence. J Magn Reson Imaging. 2010; 31: 1256 - 1263.
dc.identifier.citedreferenceFan Z, Sheehan J, Bi X, Liu X, Carr J, Li D. 3D noncontrast MR angiography of the distal lower extremities using flow-sensitive dephasing (FSD)-prepared balanced SSFP. Magn Reson Med. 2009; 62: 1523 - 1532.
dc.identifier.citedreferenceFan Z, Hodnett PA, Davarpanah AH, et al. Noncontrast magnetic resonance angiography of the hand: improved arterial conspicuity by multidirectional flow-sensitive dephasing magnetization preparation in 3D balanced steady-state free precession imaging. Investig Radiol. 2011; 46: 515 - 523.
dc.identifier.citedreferencePriest AN, Graves MJ, Lomas DJ. Non-contrast-enhanced vascular magnetic resonance imaging using flow-dependent preparation with subtraction. Magn Reson Med. 2012; 67: 628 - 637.
dc.identifier.citedreferenceLi W, Xu F, Schar M, et al. Whole-brain arteriography and venography: using improved velocity-selective saturation pulse trains. Magn Reson Med. 2018; 79: 2014 - 2023.
dc.identifier.citedreferenceZhu D, Li W, Liu D, et al. Non-contrast-enhanced abdominal MRA at 3T using velocity-selective pulse trains. Magn Reson Med. 2020; 84: 1173 - 1183.
dc.identifier.citedreferenceHua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood volume. NeuroImage. 2019; 187: 17 - 31.
dc.identifier.citedreferencevan Westen D, Petersen ET, Wirestam R, et al. Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. Magn Reson Mater Phy. 2011; 24: 211 - 223.
dc.identifier.citedreferenceLee H, Wehrli FW. Venous cerebral blood volume mapping in the whole brain using venous-spin-labeled 3D turbo spin echo. Magn Reson Med. 2020; 84: 1991 - 2003.
dc.identifier.citedreferenceQin Q, Qu Y, Li W, et al. Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains. Magn Reson Med. 2019; 81: 3544 - 3554.
dc.identifier.citedreferenceLi W, Liu D, van Zijl PCM, Qin Q. Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform-based velocity-selective pulse trains. Magn Reson Med. 2021; 86: 1420 - 1433.
dc.identifier.citedreferenceLu HZ, Ge YL. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008; 60: 357 - 363.
dc.identifier.citedreferenceKrishnamurthy LC, Liu P, Ge Y, Lu H. Vessel-specific quantification of blood oxygenation with T2-relaxation-under-phase-contrast MRI. Magn Reson Med. 2014; 71: 978 - 989.
dc.identifier.citedreferenceBolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. QUantitative imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med. 2011; 66: 1550 - 1562.
dc.identifier.citedreferenceStout JN, Adalsteinsson E, Rosen BR, Bolar DS. Functional oxygen extraction fraction (OEF) imaging with turbo gradient spin echo QUIXOTIC (turbo QUIXOTIC). Magn Reson Med. 2018; 79: 2713 - 2723.
dc.identifier.citedreferenceSchmid S, Petersen ET, Hendrikse J, Webb A, van Osch MJP. Improved selection of the venous blood pool for OEF determination: IQ-OEF. Proceedings of the Annual Meeting of the ISMRM; 2012: 2008; Melbourne, Australia.
dc.identifier.citedreferenceGuo J, Wong EC. Venous oxygenation mapping using velocity-selective excitation and arterial nulling. Magn Reson Med. 2012; 68: 1458 - 1471.
dc.identifier.citedreferenceLiu EY, Guo J, Simon AB, Haist F, Dubowitz DJ, Buxton RB. The potential for gas-free measurements of absolute oxygen metabolism during both baseline and activation states in the human brain. NeuroImage. 2020; 207: 116342.
dc.identifier.citedreferenceLi W, Xu F, Zhu D, van Zijl PCM, Qin Q. T2-oximetry based cerebral venous oxygenation mapping using Fourier-transform based velocity-selective pulse trains. Magn Reson Med. 2022; 88:1292-1302.
dc.identifier.citedreferenceQin Q, van Zijl PC. Velocity-selective-inversion prepared arterial spin labeling. Magn Reson Med. 2016; 76: 1136 - 1148.
dc.identifier.citedreferenceAlsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015; 73: 102 - 116.
dc.identifier.citedreferenceHaller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. 2016; 281: 337 - 356.
dc.identifier.citedreferenceDai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008; 60: 1488 - 1497.
dc.identifier.citedreferenceAlsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996; 16: 1236 - 1249.
dc.identifier.citedreferenceFan AP, Guo J, Khalighi MM, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in Moyamoya patients: a simultaneous positron emission tomography/MRI study. Stroke. 2017; 48: 2441 - 2449.
dc.identifier.citedreferenceWong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006; 55: 1334 - 1341.
dc.identifier.citedreferenceWong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998; 39: 702 - 708.
dc.identifier.citedreferenceMaki JH, Macfall JR, Johnson GA. The use of gradient flow compensation to separate diffusion and microcirculatory flow in Mri. Magn Reson Med. 1991; 17: 95 - 107.
dc.identifier.citedreferenceYe FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med. 1997; 37: 226 - 235.
dc.identifier.citedreferencePetersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med. 2006; 55: 219 - 232.
dc.identifier.citedreferenceNorris DG, Schwarzbauer C. Velocity selective radiofrequency pulse trains. J Magn Reson. 1999; 137: 231 - 236.
dc.identifier.citedreferenceWong EC, Liu TT, Sidaros K, Frank LR, Buxton RB. Velocity selective arterial spin labeling. Proceedings of the Annual Meeting of the ISMRM; 2002: 621; Honolulu, Hawai’i, USA.
dc.identifier.citedreferenceDuhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med. 2003; 50: 145 - 153.
dc.identifier.citedreferenceReese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 2003; 49: 177 - 182.
dc.identifier.citedreferenceWong EC, Guo J. BIR-4 based B1 and B0 insensitive velocity selective pulse trains. Proceedings of the Annual Meeting of the ISMRM; 2010: 2853; Stockholm, Sweden.
dc.identifier.citedreferenceGarwood M, Ke Y. Symmetric pulses to induce arbitrary flip angles with compensation for RF inhomogeneity and resonance offsets. J Magn Reson. 1991; 94: 511 - 525.
dc.identifier.citedreferenceMeakin JA, Jezzard P. An optimized velocity selective arterial spin labeling module with reduced eddy current sensitivity for improved perfusion quantification. Magn Reson Med. 2013; 69: 832 - 838.
dc.identifier.citedreferenceGuo J, Meakin JA, Jezzard P, Wong EC. An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses. Magn Reson Med. 2015; 73: 1085 - 1094.
dc.identifier.citedreferenceWong EC. New developments in arterial spin labeling pulse sequences. NMR Biomed. 2013; 26: 887 - 891.
dc.identifier.citedreferenceGuo J, Wong EC. Increased SNR efficiency in velocity selective arterial spin labeling using multiple velocity selective saturation modules (mm-VSASL). Magn Reson Med. 2015; 74: 694 - 705.
dc.identifier.citedreferenceWong EC, Guo J. Velocity selective inversion pulse Trains for Velocity Selective Arterial Spin Labeling. Proceedings of the Annual Meeting of the ISMRM; 2009: 619; Honolulu, Hawai’i, USA.
dc.identifier.citedreferencePauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson. 1989; 81: 43 - 56.
dc.identifier.citedreferencePauly J, Nishimura D, Macovski A. A linear class of large-tip-angle selective excitation pulses. J Magn Reson. 1989; 82: 571 - 587.
dc.identifier.citedreferencede Rochefort L, Maitre X, Bittoun J, Durand E. Velocity-selective RF pulses in MRI. Magn Reson Med. 2006; 55: 171 - 176.
dc.identifier.citedreferenceShin T, Worters PW, Hu BS, Nishimura DG. Non-contrast-enhanced renal and abdominal MR angiography using velocity-selective inversion preparation. Magn Reson Med. 2013; 69: 1268 - 1275.
dc.identifier.citedreferenceShin T, Hu BS, Nishimura DG. Off-resonance-robust velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography. Magn Reson Med. 2013; 70: 1229 - 1240.
dc.identifier.citedreferenceQin Q, Shin T, Schär M, Guo H, Chen H, Qiao Y. Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 tesla: improved immunity to B0/B1 inhomogeneity. Magn Reson Med. 2016; 75: 1232 - 1241.
dc.identifier.citedreferenceLiu D, Xu F, Li W, van Zijl PC, Lin DD, Qin Q. Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition. Magn Reson Med. 2020; 84: 2512 - 2522.
dc.identifier.citedreferenceGuo J, Das S, Hernandez-Garcia L. Comparison of velocity-selective arterial spin labeling schemes. Magn Reson Med. 2021; 85: 2027 - 2039.
dc.identifier.citedreferenceLandes V, Javed A, Jao T, Qin Q, Nayak K. Improved velocity-selective labeling pulses for myocardial ASL. Magn Reson Med. 2020; 84: 1909 - 1918.
dc.identifier.citedreferenceFranklin SL, Bones IK, Harteveld AA, et al. Multi-organ comparison of flow-based arterial spin labeling techniques: spatially non-selective labeling for cerebral and renal perfusion imaging. Magn Reson Med. 2021; 85: 2580 - 2594.
dc.identifier.citedreferenceShin T, Qin Q, Park JY, Crawford RS, Rajagopalan S. Identification and reduction of image artifacts in non-contrast-enhanced velocity-selective peripheral angiography at 3T. Magn Reson Med. 2016; 76: 466 - 477.
dc.identifier.citedreferenceShin T, Qin Q. Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography. Magn Reson Med. 2018; 80: 1997 - 2005.
dc.identifier.citedreferenceLiu D, Li W, Xu F, Zhu D, Shin T, Qin Q. Ensuring both velocity and spatial responses robust to B0/B1+ field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling. Magn Reson Med. 2021; 85: 2723 - 2734.
dc.identifier.citedreferenceHernandez-Garcia L, Nielsen JF, Noll DC. Improved sensitivity and temporal resolution in perfusion MRI using velocity selective inversion ASL. Magn Reson Med. 2019; 81: 1004 - 1015.
dc.identifier.citedreferenceLiu DP, Jiang DR, Tekes A, et al. Multi-parametric evaluation of cerebral hemodynamics in neonatal piglets using non-contrast-enhanced magnetic resonance imaging methods. J Magn Reson Imaging. 2021;54:1053-1065.
dc.identifier.citedreferencePriest AN, Taviani V, Graves MJ, Lomas DJ. Improved artery-vein separation with acceleration-dependent preparation for non-contrast-enhanced magnetic resonance angiography. Magn Reson Med. 2014; 72: 699 - 706.
dc.identifier.citedreferenceSchmid S, Ghariq E, Teeuwisse WM, Webb A, van Osch MJ. Acceleration-selective arterial spin labeling. Magn Reson Med. 2014; 71: 191 - 199.
dc.identifier.citedreferenceSchmid S, Petersen ET, Van Osch MJP. Insight into the labeling mechanism of acceleration selective arterial spin labeling. Magn Reson Mater Phy. 2017; 30: 165 - 174.
dc.identifier.citedreferenceSchmid S, Heijtel DF, Mutsaerts HJ, et al. Comparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography. J Cereb Blood Flow Metab. 2015; 35: 1296 - 1303.
dc.identifier.citedreferenceHolmes JH, Jen ML, Eisenmenger LB, Schubert T, Turski PA, Johnson KM. Spatial dependency and the role of local susceptibility for velocity selective arterial spin labeling (VS-ASL) relative tagging efficiency using accelerated 3D radial sampling with a BIR-8 preparation. Magn Reson Med. 2021; 86: 293 - 307.
dc.identifier.citedreferenceXu F, Zhu D, Fan H, et al. Magnetic resonance angiography and perfusion mapping by arterial spin labeling using Fourier transform-based velocity-selective pulse trains: examination on a commercial perfusion phantom. Magn Reson Med. 2021; 86: 1360 - 1368.
dc.identifier.citedreferenceBuxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998; 40: 383 - 396.
dc.identifier.citedreferenceHerscovitch P, Raichle ME. What is the correct value for the brain—blood partition coefficient for water? J Cereb Blood Flow Metab. 1985; 5: 65 - 69.
dc.identifier.citedreferenceWoods JG, Wong EC, Shin DD, Bolar DS. A general framework for eddy current minimization in velocity selective arterial spin labeling. Proceedings of the Annual Meeting of the ISMRM; 2021: 2720.
dc.identifier.citedreferenceLiu D, Xu F, Lin DD, van Zijl PC, Qin Q. Quantitative measurement of cerebral blood volume using velocity-selective pulse trains. Magn Reson Med. 2017; 77: 92 - 101.
dc.identifier.citedreferenceBones IK, Franklin SL, Harteveld AA, et al. Influence of labeling parameters and respiratory motion on velocity-selective arterial spin labeling for renal perfusion imaging. Magn Reson Med. 2020; 84: 1919 - 1932.
dc.identifier.citedreferenceScheel P, Ruge C, Schoning M. Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol. 2000; 26: 1261 - 1266.
dc.identifier.citedreferenceScott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009; 360: 1226 - 1237.
dc.identifier.citedreferenceQiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging. 2012; 36: 110 - 119.
dc.identifier.citedreferenceBolar DS, Gagoski B, Orbach DB, et al. Comparison of CBF measured with combined velocity-selective arterial spin-labeling and pulsed arterial spin-labeling to blood flow patterns assessed by conventional angiography in pediatric Moyamoya. Am J Neuroradiol. 2019; 40: 1842 - 1849.
dc.identifier.citedreferenceBolar DS, Rosen BR, Schaefer PW. Comparison of velocity-selective and pulsed ASL perfusion MRI in patients with suspected cerebral cortical ischemia. Abstract with Oral Presentation of 56th Annual Meeting American Society of Neuroradiology; 2018; Vancouver, British Columbia, Canada.
dc.identifier.citedreferenceQu Y, Kong D, Wen H, et al. Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol. 2022; 32: 2976 - 2987.
dc.identifier.citedreferenceWoods JG, Wong EC, Boyd EC, Bolar DS. VESPA ASL: VElocity and SPAtially selective arterial spin labeling. Magn Reson Med. 2022; 87: 2667 - 2684.
dc.identifier.citedreferenceMarkus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001; 124: 457 - 467.
dc.identifier.citedreferenceZhao MY, Vaclavu L, Petersen ET, et al. Quantification of cerebral perfusion and cerebrovascular reserve using turbo-QUASAR arterial spin labeling MRI. Magn Reson Med. 2020; 83: 731 - 748.
dc.identifier.citedreferenceZhao MY, Fan AP, Chen DYT, et al. Cerebrovascular reactivity measurements using simultaneous O15-water PET and ASL MRI: impacts of arterial transit time, labeling efficiency, and hematocrit. NeuroImage. 2021; 233: 117955.
dc.identifier.citedreferenceXu F, Xu C, Liu D, Xhu D, Lu H, Qin Q. Comparison of velocity selective ASL and PCASL with phase-contrast MRI for measuring CO 2 -induced cerebrovascular reactivity. Proceedings of the Annual Meeting of the ISMRM; 2022: 4907; London, England, UK.
dc.identifier.citedreferenceTancredi FB, Gauthier CJ, Madjar C, et al. Comparison of pulsed and pseudocontinuous arterial spin-labeling for measuring CO 2 -induced cerebrovascular reactivity. J Magn Reson Imaging. 2012; 36: 312 - 321.
dc.identifier.citedreferenceAguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage. 2002; 15: 488 - 500.
dc.identifier.citedreferenceWang J, Aguirre GK, Kimberg DY, Detre JA. Empirical analyses of null-hypothesis perfusion fMRI data at 1.5 and 4 T. NeuroImage. 2003; 19: 1449 - 1462.
dc.identifier.citedreferenceAguirre GK, Detre JA, Wang J. Perfusion fMRI for functional neuroimaging. Int Rev Neurobiol. 2005; 66: 213 - 236.
dc.identifier.citedreferenceBorogovac A, Habeck C, Small SA, Asllani I. Mapping brain function using a 30-day interval between baseline and activation: a novel arterial spin labeling fMRI approach. J Cerebr Blood F Met. 2010; 30: 1721 - 1733.
dc.identifier.citedreferenceDiekhoff S, Uludag K, Sparing R, et al. Functional localization in the human brain: gradient-Echo, spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp. 2011; 32: 341 - 357.
dc.identifier.citedreferenceIvanov D, Gardumi A, Haast RAM, Pfeuffer J, Poser BA, Uludag K. Comparison of 3T and 7T ASL techniques for concurrent functional perfusion and BOLD studies. NeuroImage. 2017; 156: 363 - 376.
dc.identifier.citedreferenceHuber L, Uludag K, Moller HE. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. NeuroImage. 2019; 197: 742 - 760.
dc.identifier.citedreferenceChai Y, Li L, Huber L, Poser BA, Bandettini PA. Integrated VASO and perfusion contrast: a new tool for laminar functional MRI. NeuroImage. 2020; 207: 116358.
dc.identifier.citedreferenceBolar DS, Polimeni J, Ohringer N, Adalsteinsson E, Rosen BR. Turbo VSASL: slice-and velocity-selective ASL for high temporal resolution functional CBF mapping. Proceedings of the Annual Meeting of the ISMRM; 2018: 710; Paris, France.
dc.identifier.citedreferenceWong EC, Luh WM, Liu TT. Turbo ASL: arterial spin labeling with higher SNR and temporal resolution. Magn Reson Med. 2000; 44: 511 - 515.
dc.identifier.citedreferenceLee GR, Hernandez-Garcia L, Noll DC. Functional imaging with turbo-CASL: transit time and multislice imaging considerations. Magn Reson Med. 2007; 57: 661 - 669.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.