Show simple item record

Global Driving of Auroral Precipitation: 1. Balance of Sources

dc.contributor.authorMukhopadhyay, Agnit
dc.contributor.authorWelling, Daniel
dc.contributor.authorLiemohn, Michael
dc.contributor.authorRidley, Aaron
dc.contributor.authorBurleigh, Meghan
dc.contributor.authorWu, Chen
dc.contributor.authorZou, Shasha
dc.contributor.authorConnor, Hyunju
dc.contributor.authorVandegriff, Elizabeth
dc.contributor.authorDredger, Pauline
dc.contributor.authorTóth, Gabor
dc.date.accessioned2022-08-02T18:57:08Z
dc.date.available2023-08-02 14:56:58en
dc.date.available2022-08-02T18:57:08Z
dc.date.issued2022-07
dc.identifier.citationMukhopadhyay, Agnit; Welling, Daniel; Liemohn, Michael; Ridley, Aaron; Burleigh, Meghan; Wu, Chen; Zou, Shasha; Connor, Hyunju; Vandegriff, Elizabeth; Dredger, Pauline; Tóth, Gabor (2022). "Global Driving of Auroral Precipitation: 1. Balance of Sources." Journal of Geophysical Research: Space Physics 127(7): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/173101
dc.description.abstractThe accurate determination of auroral precipitation in global models has remained a daunting and rather inexplicable obstacle. Understanding the calculation and balance of multiple sources that constitute the aurora, and their eventual conversion into ionospheric electrical conductance, is critical for improved prediction of space weather events. In this study, we present a semi-physical global modeling approach that characterizes contributions by four types of precipitation—monoenergetic, broadband, electron, and ion diffuse—to ionospheric electrodynamics. The model uses a combination of adiabatic kinetic theory and loss parameters derived from historical energy flux patterns to estimate auroral precipitation from magnetohydrodynamic (MHD) quantities. It then converts them into ionospheric conductance that is used to compute the ionospheric feedback to the magnetosphere. The model has been employed to simulate the 5–7 April 2010 Galaxy15 space weather event. Comparison of auroral fluxes show good agreement with observational data sets like NOAA-DMSP and OVATION Prime. The study shows a dominant contribution by electron diffuse precipitation, accounting for ∼74% of the auroral energy flux. However, contributions by monoenergetic and broadband sources dominate during times of active upstream solar conditions, providing for up to 61% of the total hemispheric power. The study also finds a greater role played by broadband precipitation in ionospheric electrodynamics which accounts for ∼31% of the Pedersen conductance.Plain Language SummaryThe aurora is comprised of electrically charged particles that enter the upper atmosphere from outer space. The entry is driven by diverse processes at different locations of the high-latitude atmosphere; these helps define the different sources that constitute the bulk of the aurora. Since the aurora is an important phenomenon in the study of near-Earth space physics and space weather, it is important to account for the contribution and balance of each individual source and deduce their impact. In this study, we have introduced a novel modeling approach that is capable of estimating contributions from four diverse sources of aurora, and used this approach to study auroral dynamics during a famous space weather event. Our results indicate that the proportion and strength of each source varies over time, location, and activity. Additionally, we identify which sources have a pronounced contribution to the ionosphere’s electrical conductance.Key PointsA semi-physical global modeling approach is used to estimate diffuse and discrete sources of auroral precipitation during the Galaxy15 eventDiffuse sources contribute 74% of the total auroral power. Discrete sources are strongly driven by activity and can contribute up to 61%Broadband precipitation contributes 31% of the auroral Pedersen conductance playing a significant role in ionospheric electrodynamics
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherM-I coupling
dc.subject.otheraurora
dc.subject.otherparticle precipitation
dc.subject.otherionospheric conductance
dc.subject.otherspace weather
dc.subject.otherMHD modeling
dc.titleGlobal Driving of Auroral Precipitation: 1. Balance of Sources
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173101/1/jgra57253.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173101/2/jgra57253_am.pdf
dc.identifier.doi10.1029/2022JA030323
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRastätter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., et al. ( 2016 ). GEM-CEDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 14, 113 – 135. https://doi.org/10.1002/2015SW001238
dc.identifier.citedreferenceRidley, A. J., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. ( 2001 ). Using steady state MHD results to predict the global state of the magnetosphere-ionosphere system. Journal of Geophysical Research, 106 ( A12 ), 30067 – 30076. https://doi.org/10.1029/2000JA002233
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & De Zeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22 ( 2 ), 567 – 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., Sokolov, I. V., Tóth, G., & Welling, D. T. ( 2010 ). Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 28 ( 8 ), 1589 – 1614. https://doi.org/10.5194/angeo-28-1589-2010
dc.identifier.citedreferenceRidley, A. J., & Kihn, E. A. ( 2004 ). Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophysical Research Letters, 31, L07801. https://doi.org/10.1029/2003GL019113
dc.identifier.citedreferenceRobinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92 ( A3 ), 2565 – 2569. https://doi.org/10.1029/JA092iA03p02565
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry ( 2nd ed. ). Cambridge University Press. https://doi.org/10.1017/CBO9780511635342
dc.identifier.citedreferenceSergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. Å., & Søraas, F. ( 1983 ). Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planetary and Space Science, 31 ( 10 ), 1147 – 1155. https://doi.org/10.1016/0032-0633(83)90103-4
dc.identifier.citedreferenceSergeev, V. A., & Tsyganenko, N. A. ( 1982 ). Energetic particle losses and trapping boundaries as deduced from calculations with a realistic magnetic field model. Planetary and Space Science, 30 ( 10 ), 999 – 1006. https://doi.org/10.1016/0032-0633(82)90149-0
dc.identifier.citedreferenceStrangeway, R. J. ( 2010 ). On the relative importance of waves and electron precipitation in driving ionospheric outflows. In AGU Fall Meeting Abstracts (Vol. 2010, pp. SM24B-03 ).
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceVandegriff, E., Welling, D. T., Dimmock, A. P., & Morley, S. ( 2020 ). Small scale dB/dt fluctuations: Resolving and exploring spikes in global models. In AGU Fall Meeting Abstracts (Vol. 2020, pp. SM003-0004 ).
dc.identifier.citedreferenceVandegriff, E., Welling, D. T., Mukhopadhyay, A., Dimmock, A. P., & Morley, S. ( 2021 ). Forecasting of localized geomagnetic disturbances in global models: Physics and numerics. In AGU Fall Meeting Abstracts (Vol. 2021, pp. SM41A-0004).
dc.identifier.citedreferenceWallis, D. D., & Budzinski, E. E. ( 1981 ). Empirical models of height integrated conductivities. Journal of Geophysical Research, 86 ( A1 ), 125 – 137. https://doi.org/10.1029/JA086iA01p00125
dc.identifier.citedreferenceWang, C., Gkioulidou, M., Lyons, L. R., & Angelopoulos, V. ( 2012 ). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. Journal of Geophysical Research, 117, A08215. https://doi.org/10.1029/2012JA017658
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., Green, D. L., Korth, H., Barnes, R. J., & Vanhamäki, H. ( 2020 ). Science data products for AMPERE. In M. W. Dunlop & H. Lühr (Eds.), Ionospheric multi-spacecraft analysis tools: Approaches for deriving ionospheric parameters (pp. 141 – 165 ). Springer International Publishing. https://doi.org/10.1007/978-3-030-26732-2_7
dc.identifier.citedreferenceWelling, D. T. ( 2019 ). Magnetohydrodynamic models of b and their use in GIC estimates. In Geomagnetically induced currents from the sun to the power grid (pp. 43 – 65 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119434412.ch3
dc.identifier.citedreferenceWelling, D. T., Anderson, B. J., Crowley, G., Pulkkinen, A. A., & Rastätter, L. ( 2017 ). Exploring predictive performance: A reanalysis of the geospace model transition challenge. Space Weather, 15, 192 – 203. https://doi.org/10.1002/2016SW001505
dc.identifier.citedreferenceWelling, D. T., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2021 ). Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather, 19, e2020SW002489. https://doi.org/10.1029/2020SW002489
dc.identifier.citedreferenceWelling, D. T., & Ridley, A. J. ( 2010 ). Exploring sources of magnetospheric plasma using multispecies MHD. Journal of Geophysical Research, 115, A04201. https://doi.org/10.1029/2009JA014596
dc.identifier.citedreferenceWiltberger, M., Merkin, V., Zhang, B., Toffoletto, F., Oppenheim, M., Wang, W., et al. ( 2017 ). Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 5008 – 5027. https://doi.org/10.1002/2016JA023700
dc.identifier.citedreferenceWiltberger, M., Weigel, R. S., Lotko, W., & Fedder, J. A. ( 2009 ). Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation. Journal of Geophysical Research, 114, A01204. https://doi.org/10.1029/2008JA013108
dc.identifier.citedreferenceWolf, R. A., Harel, M., Spiro, R. W., Voigt, G.-H., Reiff, P. H., & Chen, C.-K. ( 1982 ). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87 ( A8 ), 5949 – 5962. https://doi.org/10.1029/JA087iA08p05949
dc.identifier.citedreferenceWu, C., Ridley, A. J., DeJong, A. D., & Paxton, L. J. ( 2021 ). FTA: A feature tracking empirical model of auroral precipitation. Space Weather, 19, e2020SW002629. https://doi.org/10.1029/2020SW002629
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., Wolf, R. A., & Sazykin, S. ( 2011 ). RCM-E simulation of ion acceleration during an idealized plasma sheet bubble injection. Journal of Geophysical Research, 116, A05207. https://doi.org/10.1029/2010JA016346
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., McGranaghan, R. M., & Solomon, S. C. ( 2018 ). Self-Consistent modeling of electron precipitation and responses in the ionosphere: Application to low-altitude energization during substorms. Geophysical Research Letters, 45, 6371 – 6381. https://doi.org/10.1029/2018GL078828
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., Ridley, A. J., Albert, J. M., Horne, R. B., & Jeffery, C. A. ( 2016 ). A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model. Journal of Geophysical Research: Space Physics, 121, 8554 – 8575. https://doi.org/10.1002/2016JA022585
dc.identifier.citedreferenceYu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. ( 2010 ). Including gap region field-aligned currents and magnetospheric currents in the MHD calculation of ground-based magnetic field perturbations. Journal of Geophysical Research, 115, A08207. https://doi.org/10.1029/2009JA014869
dc.identifier.citedreferenceZhang, B., Lotko, W., Brambles, O., Wiltberger, M., & Lyon, J. ( 2015 ). Electron precipitation models in global magnetosphere simulations. Journal of Geophysical Research: Space Physics, 120, 1035 – 1056. https://doi.org/10.1002/2014JA020615
dc.identifier.citedreferenceZhang, B., Lotko, W., Brambles, O., Xi, S., Wiltberger, M., & Lyon, J. ( 2014 ). Solar wind control of auroral Alfvénic power generated in the magnetotail. Journal of Geophysical Research: Space Physics, 119, 1734 – 1748. https://doi.org/10.1002/2013JA019178
dc.identifier.citedreferenceZheng, Y., Brandt, P. C., Lui, A. T. Y., & Fok, M.-C. ( 2008 ). On ionospheric trough conductance and subauroral polarization streams: Simulation results. Journal of Geophysical Research, 113, A04209. https://doi.org/10.1029/2007JA012532
dc.identifier.citedreferenceAhn, B.-H., Akasofu, S.-I., & Kamide, Y. ( 1983 ). The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. Journal of Geophysical Research, 88 ( A8 ), 6275 – 6287. https://doi.org/10.1029/JA088iA08p06275
dc.identifier.citedreferenceAllen, J. ( 2010 ). The Galaxy 15 anomaly: Another satellite in the wrong place at a critical time. Space Weather, 8, S06008. https://doi.org/10.1029/2010SW000588
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. ( 2014 ). Development of large-scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41, 3017 – 3025. https://doi.org/10.1002/2014GL059941
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Welling, D. T., Merkin, V. G., Wiltberger, M. J., Raeder, J., et al. ( 2017 ). Comparison of predictive estimates of high-latitude electrodynamics with observations of global-scale Birkeland currents. Space Weather, 15, 352 – 373. https://doi.org/10.1002/2016SW001529
dc.identifier.citedreferenceBrautigam, D. H., Gussenhoven, M. S., & Hardy, D. A. ( 1991 ). A statistical study on the effects of IMF Bz and solar wind speed on auroral ion and electron precipitation. Journal of Geophysical Research, 96 ( A4 ), 5525 – 5538. https://doi.org/10.1029/91JA00157
dc.identifier.citedreferenceBüchner, J., & Zelenyi, L. M. ( 1987 ). Chaotization of the electron motion as the cause of an internal magnetotail instability and substorm onset. Journal of Geophysical Research, 92 ( A12 ), 13456 – 13466. https://doi.org/10.1029/JA092iA12p13456
dc.identifier.citedreferenceBurleigh, M., Mukhopadhyay, A., Welling, D., Ridley, A., & Liemohn, M. ( 2019 ). The importance of self-consistent conductivity in coupling magnetosphere-ionosphere-thermosphere models. In AGU Fall Meeting Abstracts (Vol. 2019, pp. SA41B-3168 ).
dc.identifier.citedreferenceCane, H. V., & Richardson, I. G. ( 2003 ). Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. Journal of Geophysical Research, 108 ( A4 ), 1156. https://doi.org/10.1029/2002JA009817
dc.identifier.citedreferenceCash, M., Singer, H., Millward, G., Toth, G., Welling, D., & Balch, C. ( 2018 ). NOAA SWPC’s operational geospace model performance during Earth-affecting events. In 42nd COSPAR Scientific Assembly (Vol. 42, pp. D2.3–37 – 18 ).
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., & Strangeway, R. J. ( 2003 ). Properties of small-scale Alfvén waves and accelerated electrons from FAST. Journal of Geophysical Research, 108 ( A4 ), 8003. https://doi.org/10.1029/2002JA009420
dc.identifier.citedreferenceChen, M. W., Lemon, C. L., Guild, T. B., Keesee, A. M., Lui, A., Goldstein, J., et al. ( 2015 ). Effects of modeled ionospheric conductance and electron loss on self-consistent ring current simulations during the 5–7 April 2010 storm. Journal of Geophysical Research: Space Physics, 120, 5355 – 5376. https://doi.org/10.1002/2015JA021285
dc.identifier.citedreferenceChiu, Y. T., & Schulz, M. ( 1978 ). Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region. Journal of Geophysical Research, 83 ( A2 ), 629 – 642. https://doi.org/10.1029/JA083iA02p00629
dc.identifier.citedreferenceClilverd, M. A., Rodger, C. J., Danskin, D., Usanova, M. E., Raita, T., Ulich, T., & Spanswick, E. L. ( 2012 ). Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15. Journal of Geophysical Research, 117, A12213. https://doi.org/10.1029/2012JA018175
dc.identifier.citedreferenceConnor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fuller-Rowell, T. J. ( 2016 ). Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results. Journal of Space Weather and Space Climate, 6, A25. https://doi.org/10.1051/swsc/2016019
dc.identifier.citedreferenceConnors, M., Russell, C. T., & Angelopoulos, V. ( 2011 ). Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: An unprecedented observation. Annales Geophysicae, 29 ( 3 ), 619 – 622. https://doi.org/10.5194/angeo-29-619-2011
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceEbihara, Y., Fok, M.-C., Sazykin, S., Thomsen, M. F., Hairston, M. R., Evans, D. S., et al. ( 2005 ). Ring current and the magnetosphere-ionosphere coupling during the superstorm of 20 November 2003. Journal of Geophysical Research, 110, A09S22. https://doi.org/10.1029/2004JA010924
dc.identifier.citedreferenceEjiri, M., Hoffman, R. A., & Smith, P. H. ( 1980 ). Energetic particle penetrations into the inner magnetosphere. Journal of Geophysical Research, 85 ( A2 ), 653 – 663. https://doi.org/10.1029/JA085iA02p00653
dc.identifier.citedreferenceEmery, B. A., Coumans, V., Evans, D. S., Germany, G. A., Greer, M. S., Holeman, E., et al. ( 2008 ). Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. Journal of Geophysical Research, 113, A06311. https://doi.org/10.1029/2007JA012866
dc.identifier.citedreferenceEmery, B. A., Evans, D. S., Greer, M. S., Holeman, E., Kadinsky-Cade, K., Rich, F. J., & Xu, W. ( 2006 ). The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments (Tech Note NCAR/TN-470+ STR).
dc.identifier.citedreferenceErgun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., et al. ( 1998 ). FAST satellite observations of electric field structures in the auroral zone. Geophysical Research Letters, 25 ( 12 ), 2025 – 2028. https://doi.org/10.1029/98GL00635
dc.identifier.citedreferenceEvans, D. S. ( 1974 ). Precipitating electron fluxes formed by a magnetic field aligned potential difference. Journal of Geophysical Research, 79 ( 19 ), 2853 – 2858. https://doi.org/10.1029/JA079i019p02853
dc.identifier.citedreferenceEvans, D. S., & Moore, T. E. ( 1979 ). Precipitating electrons associated with the diffuse aurora: Evidence for electrons of atmospheric origin in the plasma sheet. Journal of Geophysical Research, 84 ( A11 ), 6451 – 6457. https://doi.org/10.1029/JA084iA11p06451
dc.identifier.citedreferenceFedder, J. A., Slinker, S. P., Lyon, J. G., & Elphinstone, R. D. ( 1995 ). Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking. Journal of Geophysical Research, 100 ( A10 ), 19083 – 19093. https://doi.org/10.1029/95JA01524
dc.identifier.citedreferenceFridman, M., & Lemaire, J. ( 1980 ). Relationship between auroral electrons fluxes and field aligned electric potential difference. Journal of Geophysical Research, 85 ( A2 ), 664 – 670. https://doi.org/10.1029/JA085iA02p00664
dc.identifier.citedreferenceGaland, M., Fuller-Rowell, T. J., & Codrescu, M. V. ( 2001 ). Response of the upper atmosphere to auroral protons. Journal of Geophysical Research, 106 ( A1 ), 127 – 139. https://doi.org/10.1029/2000JA002009
dc.identifier.citedreferenceGaland, M., & Richmond, A. D. ( 2001 ). Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 106 ( A1 ), 117 – 125. https://doi.org/10.1029/1999JA002001
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Sergeev, V. A., Kubyshkina, M. V., Baker, D. N., Turner, N. E., et al. ( 2000 ). Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/CAMMICE. Journal of Geophysical Research, 105 ( A11 ), 25205 – 25219. https://doi.org/10.1029/2000JA900062
dc.identifier.citedreferenceGao, Y. ( 2012 ). Comparing the cross polar cap potentials measured by SuperDARN and AMIE during saturation intervals. Journal of Geophysical Research, 117, A08325. https://doi.org/10.1029/2012JA017690
dc.identifier.citedreferenceGilson, M. L., Raeder, J., Donovan, E., Ge, Y. S., & Kepko, L. ( 2012 ). Global simulation of proton precipitation due to field line curvature during substorms. Journal of Geophysical Research, 117, A05216. https://doi.org/10.1029/2012JA017562
dc.identifier.citedreferenceGkioulidou, M., Ohtani, S., Mitchell, D. G., Ukhorskiy, A. Y., Reeves, G. D., Turner, D. L., et al. ( 2015 ). Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event. Journal of Geophysical Research: Space Physics, 120, 1924 – 1938. https://doi.org/10.1002/2014JA020872
dc.identifier.citedreferenceGlocer, A., Tóth, G., Gombosi, T., & Welling, D. ( 2009 ). Modeling ionospheric outflows and their impact on the magnetosphere, initial results. Journal of Geophysical Research, 114, A05216. https://doi.org/10.1029/2009JA014053
dc.identifier.citedreferenceGlocer, A., Welling, D., Chappell, C. R., Toth, G., Fok, M.-C., Komar, C., et al. ( 2020 ). A case study on the origin of near-Earth plasma. Journal of Geophysical Research: Space Physics, 125, e2020JA028205. https://doi.org/10.1029/2020JA028205
dc.identifier.citedreferenceGombosi, T. I. ( 1994 ). Gas kinetic theory. Cambridge University Press. https://doi.org/10.1017/CBO9780511524943
dc.identifier.citedreferenceGombosi, T. I., De Zeeuw, D. L., Powell, K. G., Ridley, A. J., Sokolov, I. V., Stout, Q. F., & Tóth, G. ( 2003 ). Adaptive mesh refinement for global magnetohydrodynamic simulation. In J. Büchner, M. Scholer, & C. T. Dum (Eds.), Space plasma simulation (pp. 247 – 274 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-36530-3_12
dc.identifier.citedreferenceGoodman, M. L. ( 1995 ). A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations. Annales Geophysicae, 13 ( 8 ), 843 – 853. https://doi.org/10.1007/s00585-995-0843-z
dc.identifier.citedreferenceHaiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., & Ozturk, D. S. ( 2017 ). SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather, 15, 1567 – 1587. https://doi.org/10.1002/2017SW001695
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Brautigam, D. ( 1989 ). A statistical model of auroral ion precipitation. Journal of Geophysical Research, 94 ( A1 ), 370 – 392. https://doi.org/10.1029/JA094iA01p00370
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Holeman, E. ( 1985 ). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90 ( A5 ), 4229 – 4248. https://doi.org/10.1029/JA090iA05p04229
dc.identifier.citedreferenceHartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D. R., Kim, H., et al. ( 2017 ). Associating ground magnetometer observations with current or voltage generators. Journal of Geophysical Research: Space Physics, 122, 7130 – 7141. https://doi.org/10.1002/2017JA024140
dc.identifier.citedreferenceHatch, S. M., LaBelle, J., & Chaston, C. C. ( 2019 ). Inferring source properties of monoenergetic electron precipitation from Kappa and Maxwellian moment-voltage relationships. Journal of Geophysical Research: Space Physics, 124, 1548 – 1567. https://doi.org/10.1029/2018JA026158
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1976 ). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81 ( 13 ), 2165 – 2174. https://doi.org/10.1029/JA081i013p02165
dc.identifier.citedreferenceJanhunen, P., Olsson, A., Tsyganenko, N. A., Russell, C. T., Laakso, H., & Blomberg, L. G. ( 2005 ). Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data. Annales Geophysicae, 23 ( 5 ), 1797 – 1806. https://doi.org/10.5194/angeo-23-1797-2005
dc.identifier.citedreferenceJordanova, V. K., Welling, D. T., Zaharia, S. G., Chen, L., & Thorne, R. M. ( 2012 ). Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm. Journal of Geophysical Research, 117, A00L08. https://doi.org/10.1029/2011JA017433
dc.identifier.citedreferenceKaeppler, S. R., Hampton, D. L., Nicolls, M. J., Strømme, A., Solomon, S. C., Hecht, J. H., & Conde, M. G. ( 2015 ). An investigation comparing ground-based techniques that quantify auroral electron flux and conductance. Journal of Geophysical Research: Space Physics, 120, 9038 – 9056. https://doi.org/10.1002/2015JA021396
dc.identifier.citedreferenceKang, S.-B., Glocer, A., Komar, C., Fok, M.-C., & Shim, J. ( 2019 ). Wave-induced particle precipitation into the ionosphere from the inner magnetosphere. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC) (p. 1 ). https://doi.org/10.23919/URSIAP-RASC.2019.8738674
dc.identifier.citedreferenceKeesee, A. M., Chen, M. W., Scime, E. E., & Lui, A. T. Y. ( 2014 ). Regions of ion energization observed during the Galaxy-15 substorm with TWINS. Journal of Geophysical Research: Space Physics, 119, 8274 – 8287. https://doi.org/10.1002/2014JA020466
dc.identifier.citedreferenceKhachikjan, G. Y., Koustov, A. V., & Sofko, G. J. ( 2008 ). Dependence of SuperDARN cross polar cap potential upon the solar wind electric field and magnetopause subsolar distance. Journal of Geophysical Research, 113, A09214. https://doi.org/10.1029/2008JA013107
dc.identifier.citedreferenceKhazanov, G. V., Liemohn, M. W., Krivorutsky, E. N., & Moore, T. E. ( 1998 ). Generalized kinetic description of a plasma in an arbitrary field-aligned potential energy structure. Journal of Geophysical Research, 103 ( A4 ), 6871 – 6889. https://doi.org/10.1029/97JA03436
dc.identifier.citedreferenceKivelson, M., & Russell, C. ( 1995 ). Introduction to space physics. Cambridge University Press.
dc.identifier.citedreferenceKnight, S. ( 1973 ). Parallel electric fields. Planetary and Space Science, 21, 741 – 750. https://doi.org/10.1016/0032-0633(73)90093-7
dc.identifier.citedreferenceKorth, H., Zhang, Y., Anderson, B. J., Sotirelis, T., & Waters, C. L. ( 2014 ). Statistical relationship between large-scale upward field-aligned currents and electron precipitation. Journal of Geophysical Research: Space Physics, 119, 6715 – 6731. https://doi.org/10.1002/2014JA019961
dc.identifier.citedreferenceLiemohn, M. W. ( 2020 ). The case for improving the Robinson formulas. Journal of Geophysical Research: Space Physics, 125, e2020JA028332. https://doi.org/10.1029/2020JA028332
dc.identifier.citedreferenceLiemohn, M. W., Katus, R. M., & Ilie, R. ( 2015 ). Statistical analysis of storm-time near-Earth current systems. Annales Geophysicae, 33, 965 – 982. https://doi.org/10.5194/angeo-33-965-2015
dc.identifier.citedreferenceLiemohn, M. W., & Khazanov, G. V. ( 1998 ). Collisionless plasma modeling in an arbitrary potential energy distribution. Physics of Plasmas, 5 ( 3 ), 580 – 589. https://doi.org/10.1063/1.872750
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Brandt, P. C., Gallagher, D. L., Kozyra, J. U., Ober, D. M., et al. ( 2005 ). Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 110, A12S22. https://doi.org/10.1029/2005JA011109
dc.identifier.citedreferenceLiemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., & Mukhopadhyay, A. ( 2021 ). RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218, 105624. https://doi.org/10.1016/j.jastp.2021.105624
dc.identifier.citedreferenceLiemohn, M. W., Welling, D. T., Simpson, J. J., Ilie, R., Anderson, B. J., Zou, S., et al. ( 2018 ). Charged: Understanding the physics of extreme geomagnetically induced currents. In AGU Fall Meeting Abstracts (Vol. 2018, p. NH31C-0993 ).
dc.identifier.citedreferenceLin, D., Sorathia, K., Wang, W., Merkin, V., Bao, S., Pham, K., et al. ( 2021 ). The role of diffuse electron precipitation in the formation of subauroral polarization streams. Earth and Space Science Open Archive, 20. https://doi.org/10.1002/essoar.10508315.1
dc.identifier.citedreferenceLin, D., Wang, W., Scales, W. A., Pham, K., Liu, J., Zhang, B., et al. ( 2019 ). SAPS in the 17 March 2013 storm event: Initial results from the coupled magnetosphere-ionosphere-thermosphere model. Journal of Geophysical Research: Space Physics, 124, 6212 – 6225. https://doi.org/10.1029/2019JA026698
dc.identifier.citedreferenceLoto’aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker, D., & Angelopoulos, V. ( 2015 ). Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather, 13, 484 – 502. https://doi.org/10.1002/2015SW001239
dc.identifier.citedreferenceLu, G., Baker, D. N., McPherron, R. L., Farrugia, C. J., Lummerzheim, D., Ruohoniemi, J. M., et al. ( 1998 ). Global energy deposition during the January 1997 magnetic cloud event. Journal of Geophysical Research, 103 ( A6 ), 11685 – 11694. https://doi.org/10.1029/98JA00897
dc.identifier.citedreferenceLyons, L. R., Evans, D. S., & Lundin, R. ( 1979 ). An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. Journal of Geophysical Research, 84 ( A2 ), 457 – 461. https://doi.org/10.1029/JA084iA02p00457
dc.identifier.citedreferenceMerkine, V. G., Papadopoulos, K., Milikh, G., Sharma, A. S., Shao, X., Lyon, J., & Goodrich, C. ( 2003 ). Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling. Geophysical Research Letters, 30 ( 23 ), 2180. https://doi.org/10.1029/2003GL017903
dc.identifier.citedreferenceMoen, J., & Brekke, A. ( 1993 ). The solar flux influence on quiet time conductances in the auroral ionosphere. Geophysical Research Letters, 20 ( 10 ), 971 – 974. https://doi.org/10.1029/92GL02109
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMöstl, C., Temmer, M., Rollett, T., Farrugia, C. J., Liu, Y., Veronig, A. M., et al. ( 2010 ). STEREO and wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010. Geophysical Research Letters, 37, L24103. https://doi.org/10.1029/2010GL045175
dc.identifier.citedreferenceMukhopadhyay, A., Burleigh, M. B., Welling, D. T., Vandegriff, E., Liemohn, M. W., Ridley, A. J., et al. ( 2021a ). Challenges in space weather prediction: Discerning the impact of ionospheric conductance in global simulations. In 101st American Meteorological Society Annual Meeting (Paper ID 11.9). American Meteorological Society.
dc.identifier.citedreferenceMukhopadhyay, A., Jia, X., Welling, D. T., & Liemohn, M. W. ( 2021b ). Global magnetohydrodynamic simulations: Performance quantification of magnetopause distances and convection potential predictions. Frontiers in Astronomy and Space Sciences, 8, 45. https://doi.org/10.3389/fspas.2021.637197
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D., Burleigh, M., Ridley, A., Liemohn, M., Anderson, B., & Gjerloev, J. ( 2019 ). Conductance in the aurora: Influence of magnetospheric contributors. In AGU Fall Meeting Abstracts (Vol. 2019, pp. Sa41B-3169). https://doi.org/10.1002/essoar.10502150.1
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D., Liemohn, M., Zou, S., & Ridley, A. ( 2018 ). Challenges in space weather prediction: Estimation of auroral conductance. In AGU Fall Meeting Abstracts (Vol. 2018, pp. SA33B – 3462 ). Retrieved from https://ui.adsabs.harvard.edu/abs/2018AGUFMSA33B3462M/abstract
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance model for extreme events: Impact of auroral conductance on space weather Forecasts. Space Weather, 19, e2020SW002551. https://doi.org/10.1029/2020SW002551
dc.identifier.citedreferenceNewell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., & Mitchell, E. J. ( 2014 ). OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather, 12, 368 – 379. https://doi.org/10.1002/2014SW001056
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., & Rich, F. J. ( 2007 ). A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112, A01206. https://doi.org/10.1029/2006JA012015
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326
dc.identifier.citedreferenceNishimura, Y., Lessard, M. R., Katoh, Y., Miyoshi, Y., Grono, E., Partamies, N., et al. ( 2020a ). Diffuse and pulsating aurora. Space Science Reviews, 216 ( 1 ), 4. https://doi.org/10.1007/s11214-019-0629-3
dc.identifier.citedreferenceNishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020b ). Extreme magnetosphere-ionosphere-thermosphere responses to the 5 April 2010 supersubstorm. Journal of Geophysical Research: Space Physics, 125, e2019JA027654. https://doi.org/10.1029/2019JA027654
dc.identifier.citedreferenceOhtani, S., Wing, S., Merkin, V. G., & Higuchi, T. ( 2014 ). Solar cycle dependence of nightside field-aligned currents: Effects of dayside ionospheric conductivity on the solar wind-magnetosphere-ionosphere coupling. Journal of Geophysical Research: Space Physics, 119, 322 – 334. https://doi.org/10.1002/2013JA019410
dc.identifier.citedreferenceØstgaard, N., Germany, G., Stadsnes, J., & Vondrak, R. R. ( 2002 ). Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices. Journal of Geophysical Research, 107 ( A9 ), 1233. https://doi.org/10.1029/2001JA002002
dc.identifier.citedreferenceÖztürk, D. S., Garcia-Sage, K., & Connor, H. K. ( 2020 ). All hands on deck for ionospheric modeling. Eos, Transactions American Geophysical Union, 101. https://doi.org/10.1029/2020EO144365
dc.identifier.citedreferenceOzturk, D. S., Zou, S., Ridley, A. J., & Slavin, J. A. ( 2018 ). Modeling study of the geospace system response to the solar wind dynamic pressure enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 123, 2974 – 2989. https://doi.org/10.1002/2017JA025099
dc.identifier.citedreferenceOzturk, D. S., Zou, S., & Slavin, J. A. ( 2017 ). IMF by effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research: Space Physics, 122, 5028 – 5042. https://doi.org/10.1002/2017JA023903
dc.identifier.citedreferencePaschmann, G., Baumjohann, W., Sckopke, N., Phan, T. D., & Lühr, H. ( 1993 ). Structure of the dayside magnetopause for low magnetic shear. Journal of Geophysical Research, 98 ( A8 ), 13409 – 13422. https://doi.org/10.1029/93JA00646
dc.identifier.citedreferencePerlongo, N. J., Ridley, A. J., Liemohn, M. W., & Katus, R. M. ( 2017 ). The effect of ring current electron scattering rates on magnetosphere-ionosphere coupling. Journal of Geophysical Research: Space Physics, 122, 4168 – 4189. https://doi.org/10.1002/2016JA023679
dc.identifier.citedreferencePhan, T. D., Paschmann, G., Baumjohann, W., Sckopke, N., & Lühr, H. ( 1994 ). The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. Journal of Geophysical Research, 99 ( A1 ), 121 – 141. https://doi.org/10.1029/93JA02444
dc.identifier.citedreferencePulkkinen, A., Kuznetsova, M., Ridley, A., Raeder, J., Vapirev, A., Weimer, D., et al. ( 2011 ). Geospace environment modeling 2008–2009 challenge: Ground magnetic field perturbations. Space Weather, 9, S02004. https://doi.org/10.1029/2010SW000600
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., et al. ( 2001 ). Global simulation of the geospace environment modeling substorm challenge event. Journal of Geophysical Research, 106 ( A1 ), 381 – 395. https://doi.org/10.1029/2000JA000605
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.