An adaptive platform trial for evaluating treatments in patients with life-threatening hemorrhage from traumatic injuries: Rationale and proposal
dc.contributor.author | Tolles, Juliana | |
dc.contributor.author | Beiling, Marissa | |
dc.contributor.author | Schreiber, Martin A. | |
dc.contributor.author | Del Junco, Deborah J. | |
dc.contributor.author | McMullan, Jason T. | |
dc.contributor.author | Guyette, Francis X. | |
dc.contributor.author | Wang, Henry | |
dc.contributor.author | Jansen, Jan O. | |
dc.contributor.author | Meurer, William J. | |
dc.contributor.author | Mainali, Shraddha | |
dc.contributor.author | Yadav, Kabir | |
dc.contributor.author | Lewis, Roger J. | |
dc.date.accessioned | 2022-08-02T18:57:15Z | |
dc.date.available | 2023-09-02 14:57:14 | en |
dc.date.available | 2022-08-02T18:57:15Z | |
dc.date.issued | 2022-08 | |
dc.identifier.citation | Tolles, Juliana; Beiling, Marissa; Schreiber, Martin A.; Del Junco, Deborah J.; McMullan, Jason T.; Guyette, Francis X.; Wang, Henry; Jansen, Jan O.; Meurer, William J.; Mainali, Shraddha; Yadav, Kabir; Lewis, Roger J. (2022). "An adaptive platform trial for evaluating treatments in patients with life-threatening hemorrhage from traumatic injuries: Rationale and proposal." Transfusion 62: S231-S241. | |
dc.identifier.issn | 0041-1132 | |
dc.identifier.issn | 1537-2995 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/173104 | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | hemorrhagic shock | |
dc.subject.other | medical ethics | |
dc.subject.other | platform trials | |
dc.subject.other | trauma resuscitation | |
dc.subject.other | exception from informed consent | |
dc.subject.other | adaptive trials | |
dc.subject.other | clinical trial design | |
dc.title | An adaptive platform trial for evaluating treatments in patients with life-threatening hemorrhage from traumatic injuries: Rationale and proposal | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Oncology and Hematology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173104/1/trf16957_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173104/2/trf16957.pdf | |
dc.identifier.doi | 10.1111/trf.16957 | |
dc.identifier.source | Transfusion | |
dc.identifier.citedreference | del Junco DJ, Neal MD, Shackelford SA, Spinella PC, Guyette FX, Sperry JL, et al. An adaptive platform trial for evaluating treatments in patients with life-threatening hemorrhage from traumatic injuries: planning and execution. Transfusion. 2022. | |
dc.identifier.citedreference | Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017; 377 ( 1 ): 62 – 70. https://doi.org/10.1056/NEJMra1510062 PMID: 28679092. | |
dc.identifier.citedreference | Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. JAMA. 2015; 313 ( 16 ): 1619 – 20. https://doi.org/10.1001/jama.2015.2316 PMID: 25799162. | |
dc.identifier.citedreference | Tolles J, Lewis RJ ( 2018 ). Adaptive and platform trials in remote damage control resuscitation. J Trauma Acute Care Surg, Jun; 84 ( 6S Suppl 1 ): S28 - S34. doi: https://doi.org/10.1097/TA.0000000000001904. PMID: 29554037 | |
dc.identifier.citedreference | Saville BR, Berry SM. Efficiencies of platform clinical trials: a vision of the future. Clin Trials. 2016; 13 ( 3 ): 358 – 66. https://doi.org/10.1177/1740774515626362 Epub 2016 Feb 17. PMID: 26908536. | |
dc.identifier.citedreference | Viele K, Saville BR, McGlothlin A, Broglio K. Comparison of response adaptive randomization features in multiarm clinical trials with control. Pharm Stat. 2020; 19 ( 5 ): 602 – 12. https://doi.org/10.1002/pst.2015 Epub 2020 Mar 21. PMID: 32198968. | |
dc.identifier.citedreference | Viele K, Broglio K, McGlothlin A, Saville BR. Comparison of methods for control allocation in multiple arm studies using response adaptive randomization. Clin Trials. 2020; 17 ( 1 ): 52 – 60. https://doi.org/10.1177/1740774519877836 Epub 2019 Oct 19. PMID: 31630567. | |
dc.identifier.citedreference | Meurer WJ, Lewis RJ, Berry DA. Adaptive clinical trials: a partial remedy for the therapeutic misconception? JAMA. 2012; 307 ( 22 ): 2377 – 8. https://doi.org/10.1001/jama.2012.4174 | |
dc.identifier.citedreference | London AJ. Learning health systems, clinical equipoise and the ethics of response adaptive randomization. J Med Ethics. 2018; 44: 409 – 15. | |
dc.identifier.citedreference | US Food and Drug Administration Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials. Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-use-bayesian-statistics-medical-device-clinical-trials. Accessed April 29, 2022. | |
dc.identifier.citedreference | Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2nd ed. Boca Raton: Texts in Statistical Science. Chapman & Hall/CRC; 2003. | |
dc.identifier.citedreference | UPMC REMAP-COVID Group, on behalf of the REMAP-CAP Investigators. Implementation of the randomized embedded multifactorial adaptive platform for COVID-19 (REMAP-COVID) trial in a US health system-lessons learned and recommendations. Trials. 2021; 22 ( 1 ): 100. https://doi.org/10.1186/s13063-020-04997-6 Erratum in: Trials. 2021 Feb 16;22(1):145. PMID: 33509275; PMCID: PMC7841377. | |
dc.identifier.citedreference | Angus DC, Berry S, Lewis RJ, Al-Beidh F, Arabi Y, van Bentum-Puijk W, et al. The REMAP-CAP (randomized embedded multifactorial adaptive platform for community-acquired pneumonia) study. Rationale and design. Ann Am Thorac Soc. 2020; 17 ( 7 ): 879 – 91. https://doi.org/10.1513/AnnalsATS.202003-192SD PMID: 32267771; PMCID: PMC7328186. | |
dc.identifier.citedreference | ATTACC Investigators; ACTIV-4a Investigators; REMAP-CAP Investigators, Lawler PR, Goligher EC, Berger JS, Neal MD, BJ MV, et al. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021; 385 ( 9 ): 790 – 802. https://doi.org/10.1056/NEJMoa2105911 Epub 2021 Aug 4. PMID: 34351721; PMCID: PMC8362594. | |
dc.identifier.citedreference | REMAP-CAP Investigators; ACTIV-4a Investigators; ATTACC Investigators, Goligher EC, Bradbury CA, McVerry BJ, Lawler PR, Berger JS, et al. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021; 385 ( 9 ): 777 – 89. https://doi.org/10.1056/NEJMoa2103417 Epub 2021 Aug 4. PMID: 34351722; PMCID: PMC8362592. | |
dc.identifier.citedreference | Writing Committee for the REMAP-CAP Investigators, Estcourt LJ, Turgeon AF, ZK MQ, McVerry BJ, Al-Beidh F, et al. Effect of convalescent plasma on organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2021; 326 ( 17 ): 1690 – 702. https://doi.org/10.1001/jama.2021.18178 PMID: 34606578; PMCID: PMC8491132. | |
dc.identifier.citedreference | Arabi YM, Gordon AC, Derde LPG, Nichol AD, Murthy S, Beidh FA, et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021; 47 ( 8 ): 867 – 86. https://doi.org/10.1007/s00134-021-06448-5 Epub 2021 Jul 12. PMID: 34251506; PMCID: PMC8274471. | |
dc.identifier.citedreference | Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA. 2020; 324 ( 13 ): 1317 – 29. https://doi.org/10.1001/jama.2020.17022 PMID: 32876697; PMCID: PMC7489418. | |
dc.identifier.citedreference | Goldkind SF, Brosch LR, Lewis RJ, Pedroza C, Spinella PC, Shackelford SA, et al. An adaptive platform trial for evaluating treatments in patients with life-threatening hemorrhage from traumatic injuries: ethical and US regulatory considerations. Transfusion. 2022. | |
dc.identifier.citedreference | Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015; 313 ( 5 ): 471 – 82. https://doi.org/10.1001/jama.2015.12 | |
dc.identifier.citedreference | Callum J, Farkouh ME, Scales DC, Heddle NM, Crowther M, Rao V, et al. Effect of fibrinogen concentrate vs cryoprecipitate on blood component transfusion after cardiac surgery: the FIBRES randomized clinical trial. JAMA. 2019; 322 ( 20 ): 1966 – 76. https://doi.org/10.1001/jama.2019.17312 | |
dc.identifier.citedreference | Broglio K. Randomization in clinical trials: permuted blocks and stratification. JAMA. 2018; 319 ( 21 ): 2223 – 4. https://doi.org/10.1001/jama.2018.6360 | |
dc.identifier.citedreference | Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016; 133 ( 6 ): 601 – 9. https://doi.org/10.1161/CIRCULATIONAHA.115.017719 PMID: 26858290; PMCID: PMC4741409. | |
dc.identifier.citedreference | Spinella PC, El Kassar N, Cap AP, Kindzelski AL, Almond CS, Barkun A, et al. Hemostasis trials outcomes working group. Recommended primary outcomes for clinical trials evaluating hemostatic blood products and agents in patients with bleeding: proceedings of a National Heart Lung and blood institute and US Department of defense consensus conference. J Trauma Acute Care Surg. 2021; 91 ( 2S Suppl 2 ): S19 – 25. https://doi.org/10.1097/TA.0000000000003300 PMID: 34039915. | |
dc.identifier.citedreference | Holcomb JB, Moore EE, Sperry JL, Jansen JO, Schreiber MA, Del Junco DJ, et al. Evidence-based and clinically relevant outcomes for hemorrhage control trauma trials. Ann Surg. 2021; 273 ( 3 ): 395 – 401. https://doi.org/10.1097/SLA.0000000000004563 PMID: 33065652. | |
dc.identifier.citedreference | Kwok H, Lewis RJ. Bayesian hierarchical modeling and the integration of heterogeneous information on the effectiveness of cardiovascular therapies. Circ Cardiovasc Qual Outcomes. 2011; 4 ( 6 ): 657 – 66. https://doi.org/10.1161/CIRCOUTCOMES.111.960724 PMID: 22085987. | |
dc.identifier.citedreference | Berry SM, Reese CS, Larkey PD. Bridging different eras in sports. J Am Stat Assoc. 1999; 94 ( 447 ): 661 – 76. https://doi.org/10.1080/01621459.1999.10474163 | |
dc.identifier.citedreference | Park JJH, Detry MA, Murthy S, Guyatt G, Mills EJ. How to use and interpret the results of a platform trial: Users’ guide to the medical literature. JAMA. 2022; 327 ( 1 ): 67 – 74. https://doi.org/10.1001/jama.2021.22507 | |
dc.identifier.citedreference | Elm JJ, Palesch YY, Koch GG, Hinson V, Ravina B, Zhao W. Flexible analytical methods for adding a treatment arm mid-study to an ongoing clinical trial. J Biopharm Stat. 2012; 22 ( 4 ): 758 – 72. https://doi.org/10.1080/10543406.2010.528103 | |
dc.identifier.citedreference | Villar SS, Bowden J, Wason J. Response-adaptive designs for binary responses: how to offer patient benefit while being robust to time trends? Pharm Stat. 2018; 17 ( 2 ): 182 – 97. https://doi.org/10.1002/pst.1845 | |
dc.identifier.citedreference | Lee KM, Wason J. Including non-concurrent control patients in the analysis of platform trials: is it worth it? BMC Med Res Methodol. 2020; 20: 165. https://doi.org/10.1186/s12874-020-01043-6 | |
dc.identifier.citedreference | McGlothlin AE, Lewis RJ. Minimal clinically important difference: defining what really matters to patients. JAMA. 2014; 312 ( 13 ): 1342 – 3. https://doi.org/10.1001/jama.2014.13128 | |
dc.identifier.citedreference | Code of Federal Regulations Title 21 50.24(d). Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=50.24. Accessed November 28, 2021. | |
dc.identifier.citedreference | National Center for Health Statistics, Centers for Disease Control and Prevention. Leading Causes of Death and Numbers of Deaths, by Age: United States, 1980 and 2018. Available at http://www.cdc.gov/nchs/hus/contents2019.htm#Table-007 accessed December 1, 2021. | |
dc.identifier.citedreference | Tisherman SA, Stein DM. ICU Management of Trauma Patients. Crit Care Med. 2018; 46 ( 12 ): 1991 – 7. https://doi.org/10.1097/CCM.0000000000003407 | |
dc.identifier.citedreference | Jones CM, Cushman JT, Lerner EB, Fisher SG, Seplaki CL, Veazie PJ, et al. Prehospital trauma triage decision-making: a model of what happens between the 9-1-1 call and the hospital. Prehosp Emerg Care. 2016; 20 ( 1 ): 6 – 14. https://doi.org/10.3109/10903127.2015.1025157 | |
dc.identifier.citedreference | Schafer N, Driessen A, Frohlich M, Sturmer EK, Maegele M, TACTIC partners. Diversity in clinical management and protocols for the treatment of major bleeding trauma patients across European level I trauma Centres. Scand J Trauma Resusc Emerg Med. 2015; 23: 74. https://doi.org/10.1186/s13049-015-0147-6 | |
dc.identifier.citedreference | Spinella PC. Zero preventable deaths after traumatic injury: an achievable goal. J Trauma Acute Care Surg. 2017; 82 ( 6S Suppl 1 ): S2 – 8. https://doi.org/10.1097/TA.0000000000001425 | |
dc.identifier.citedreference | Carroll SL, Dye DW, Smedley WA, Stephens SW, Reiff DA, Kerby JD, et al. Early and prehospital trauma deaths: who might benefit from advanced resuscitative care? J Trauma Acute Care Surg. 2020; 88 ( 6 ): 776 – 82. https://doi.org/10.1097/TA.0000000000002657 | |
dc.identifier.citedreference | Angus DC, Chang CH. Heterogeneity of treatment effect: estimating how the effects of interventions vary across individuals. JAMA. 2021; 326 ( 22 ): 2312 – 3. https://doi.org/10.1001/jama.2021.20552 | |
dc.identifier.citedreference | Champion HR, Fingerhut A, Escobar MA, Weiskopf RB. The role of data and safety monitoring in acute trauma resuscitation research. J Am Coll Surg. 2007; 204 ( 1 ): 73 – 83. https://doi.org/10.1016/j.jamcollsurg.2006.10.024 | |
dc.identifier.citedreference | US Food and Drug Administration. Adaptive Designs for Clinical Trials of Drugs and Biologics Guidance for Industry. Available at https://www.fda.gov/media/78495/download. Accessed November 19, 2021. | |
dc.identifier.citedreference | Berry S, Carlin BP, Lee JJ, Muller P. Bayesian adaptive methods for clinical trials, Chapman & Hall/CRC biostatistics series. 2010. | |
dc.identifier.citedreference | Meurer WJ, Lewis RJ, Tagle D, Fetters MD, Legocki L, Berry S, et al. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project. Ann Emerg Med. 2012; 60 ( 4 ): 451 – 7. https://doi.org/10.1016/j.annemergmed.2012.01.020 | |
dc.identifier.citedreference | Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016; 375 ( 1 ): 65 – 74. https://doi.org/10.1056/NEJMra1510061 PMID: 27406349. | |
dc.identifier.citedreference | Adaptive Platform Trials Coalition. Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov. 2019; 18 ( 10 ): 797 – 807. https://doi.org/10.1038/s41573-019-0034-3 Epub 2019 Aug 28. Erratum in: Nat Rev Drug Discov. 2019 Sep 10;: PMID: 31462747. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.