Diffusion of H2S from anaerobic thiolated ligand biodegradation rapidly generates bioavailable mercury
dc.contributor.author | Stenzler, Benjamin R. | |
dc.contributor.author | Zhang, Rui | |
dc.contributor.author | Semrau, Jeremy D. | |
dc.contributor.author | DiSpirito, Alan A. | |
dc.contributor.author | Poulain, Alexandre J. | |
dc.date.accessioned | 2022-08-02T18:57:20Z | |
dc.date.available | 2023-08-02 14:57:19 | en |
dc.date.available | 2022-08-02T18:57:20Z | |
dc.date.issued | 2022-07 | |
dc.identifier.citation | Stenzler, Benjamin R.; Zhang, Rui; Semrau, Jeremy D.; DiSpirito, Alan A.; Poulain, Alexandre J. (2022). "Diffusion of H2S from anaerobic thiolated ligand biodegradation rapidly generates bioavailable mercury." Environmental Microbiology 24(7): 3212-3228. | |
dc.identifier.issn | 1462-2912 | |
dc.identifier.issn | 1462-2920 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/173106 | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.title | Diffusion of H2S from anaerobic thiolated ligand biodegradation rapidly generates bioavailable mercury | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Microbiology and Immunology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173106/1/emi16078.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173106/2/emi16078_am.pdf | |
dc.identifier.doi | 10.1111/1462-2920.16078 | |
dc.identifier.source | Environmental Microbiology | |
dc.identifier.citedreference | Schuster, P.F., Schaefer, K.M., Aiken, G.R., Antweiler, R.C., Dewild, J.F., Gryziec, J.D., et al. ( 2018 ) Permafrost stores a globally significant amount of mercury. Geophys Res Lett 45: 1463 – 1471. | |
dc.identifier.citedreference | Song, Y., Jiang, T., Liem-Nguyen, V., Sparrman, T., Björn, E., and Skyllberg, U. ( 2018 ) Thermodynamics of Hg(II) bonding to thiol groups in Suwannee River natural organic matter resolved by competitive ligand exchange, Hg LIII-edge EXAFS and 1H NMR spectroscopy. Environ Sci Technol 52: 8292 – 8301. | |
dc.identifier.citedreference | Stenzler, B. R., Gaudet, J., and Poulain, A. J. ( 2018 ). An Anaerobic Biosensor Assay for the Detection of Mercury and Cadmium. Journal of Visualized Experiments, 142. https://doi.org/10.3791/58324 | |
dc.identifier.citedreference | Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and Landing, W. M. ( 2009 ). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles, 23 ( 2 ). https://doi.org/10.1029/2008gb003425 | |
dc.identifier.citedreference | Szczuka, A., Morel, F.M.M., and Schaefer, J.K. ( 2015 ) Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 49: 7432 – 7438. | |
dc.identifier.citedreference | Tang, Z., Fan, F., Deng, S., and Wang, D. ( 2020 ) Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury – a critical review. Ecotoxicol Environ Saf 202: 110950. | |
dc.identifier.citedreference | The UniProt Consortium. ( 2021 ) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49: D480 – D489. | |
dc.identifier.citedreference | Thomas, S.A., Catty, P., Hazemann, J.-L., Michaud-Soret, I., and Gaillard, J.-F. ( 2019 ) The role of cysteine and sulfide in the interplay between microbial Hg(II) uptake and sulfur metabolism†. Metallomics 11: 1219 – 1229. | |
dc.identifier.citedreference | Thomas, S.A., Mishra, B., and Myneni, S.C.B. ( 2020 ) Cellular mercury coordination environment, and not cell surface ligands, influence bacterial methylmercury production. Environ Sci Technol 54: 3960 – 3968. | |
dc.identifier.citedreference | Thomas, S.A., Rodby, K.E., Roth, E.W., Wu, J., and Gaillard, J.F. ( 2018 ) Spectroscopic and microscopic evidence of biomediated HgS species formation from Hg(II)-cysteine complexes: implications for Hg(II) bioavailability. Environ Sci Technol 52: 10030 – 10039. | |
dc.identifier.citedreference | Thomas, S.A., Tong, T., and Gaillard, J.-F. ( 2014 ) Hg(II) bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics 6: 2213 – 2222. | |
dc.identifier.citedreference | Tian, L., Guan, W., Ji, Y., He, X., Chen, W., Alvarez, P.J.J., and Zhang, T. ( 2021 ) Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nat Geosci 14: 409 – 416. | |
dc.identifier.citedreference | Vorobev, A., Jagadevan, S., Baral Bipin, S., DiSpirito Alan, A., Freemeier Brittani, C., Bergman Brandt, H., et al. ( 2013 ) Detoxification of mercury by Methanobactin from Methylosinus trichosporium OB3b. Appl Environ Microbiol 79: 5918 – 5926. | |
dc.identifier.citedreference | Yin, X., Wang, L., Zhang, L., Chen, H., Liang, X., Lu, X., et al. ( 2020 ) Synergistic effects of a chalkophore, methanobactin, on microbial methylation of mercury. Appl Environ Microbiol 86: e00122-00120. | |
dc.identifier.citedreference | Yu, Q., Szymanowski, J., Myneni, S.C.B., and Fein, J.B. ( 2014 ) Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations. Chem Geol 373: 50 – 58. | |
dc.identifier.citedreference | Yu, R.-Q., Reinfelder, J.R., Hines, M.E., and Barkay, T. ( 2013 ) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Microbiol 79: 6325 – 6330. | |
dc.identifier.citedreference | Zhang, Z., Si, R., Lv, J., Ji, Y., Chen, W., Guan, W., et al. ( 2020 ) Effects of extracellular polymeric substances on the formation and methylation of mercury sulfide nanoparticles. Environ Sci Technol 54: 8061 – 8071. | |
dc.identifier.citedreference | Zhao, L., Chen, H., Lu, X., Lin, H., Christensen, G.A., and Pierce, E.M. ( 2017 ) Contrasting effects of dissolved organic matter on mercury methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environ Sci Technol 51: 10468 – 10475. | |
dc.identifier.citedreference | Zhou, J., Smith, M.D., Cooper, S.J., Cheng, X., Smith, J.C., and Parks, J.M. ( 2017 ) Modeling of the passive permeation of mercury and methylmercury complexes through a bacterial cytoplasmic membrane. Environ Sci Technol 51: 10595 – 10604. | |
dc.identifier.citedreference | Adediran, G.A., Liem-Nguyen, V., Song, Y., Schaefer, J.K., Skyllberg, U., and Björn, E. ( 2019 ) Microbial biosynthesis of thiol compounds: implications for speciation, cellular uptake, and methylation of Hg(II). Environ Sci Technol 53: 8187 – 8196. | |
dc.identifier.citedreference | An, J., Zhang, L., Lu, X., Pelletier, D.A., Pierce, E.M., Johs, A., et al. ( 2019 ) Mercury uptake by Desulfovibrio desulfuricans ND132: passive or active? Environ Sci Technol 53: 6264 – 6272. | |
dc.identifier.citedreference | Balls, P.W., and Liss, P.S. ( 1983 ) Exchange of H 2 S between water and air. Atmos Environ 1967: 735 – 742. | |
dc.identifier.citedreference | Bandow, N.L., Gallagher, W.H., Behling, L., Choi, D.W., Semrau, J.D., Hartsel, S.C., et al. ( 2011 ) Isolation of methanobactin from the spent media of methane-oxidizing bacteria. Methods Enzymol 495: 259 – 269. | |
dc.identifier.citedreference | Baral, B.S., Bandow, N.L., Vorobev, A., Freemeier, B.C., Bergman, B.H., Herdendorf, T.J., et al. ( 2014 ) Mercury binding by methanobactin from Methylocystis strain SB2. J Inorg Biochem 141: 161 – 169. | |
dc.identifier.citedreference | Beulig, F., Røy, H., McGlynn, S.E., and Jørgensen, B.B. ( 2019 ) Cryptic CH 4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J 13: 250 – 262. | |
dc.identifier.citedreference | Bjørklund, G., Crisponi, G., Nurchi, V.M., Cappai, R., Buha Djordjevic, A., and Aaseth, J. ( 2019 ) A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules 24: 3247. | |
dc.identifier.citedreference | Branfireun, B.A., Cosio, C., Poulain, A.J., Riise, G., and Bravo, A.G. ( 2020 ) Mercury cycling in freshwater systems – an updated conceptual model. Sci Total Environ 745: 140906. | |
dc.identifier.citedreference | Bravo, A.G., Cosio, C., Amouroux, D., Zopfi, J., Chevalley, P.-A., Spangenberg, J.E., et al. ( 2014 ) Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Res 49: 391 – 405. | |
dc.identifier.citedreference | Carrasco-Gil, S., Alvarez-Fernández, A., Sobrino-Plata, J., Millán, R., Carpena-Ruiz, R.O., Leduc, D.L., et al. ( 2011 ) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34: 778 – 791. | |
dc.identifier.citedreference | Chiasson-Gould, S.A., Blais, J.M., and Poulain, A.J. ( 2014 ) Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol 48: 3153 – 3161. | |
dc.identifier.citedreference | Choi, U., and Lee, C.-R. ( 2019 ) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 10: 953. | |
dc.identifier.citedreference | Colombo, M.J., Ha, J., Reinfelder, J.R., Barkay, T., and Yee, N. ( 2013 ) Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochim Cosmochim Acta 112: 166 – 177. | |
dc.identifier.citedreference | Deonarine, A., and Hsu-Kim, H. ( 2009 ) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43: 2368 – 2373. | |
dc.identifier.citedreference | Diaz, R.J., and Rosenberg, R. ( 2008 ) Spreading dead zones and consequences for marine ecosystems. Science 321: 926 – 929. | |
dc.identifier.citedreference | Dranguet, P., Slaveykova, V.I., and Le Faucheur, S. ( 2018 ) Kinetics of mercury accumulation by freshwater biofilms. Environ Chem 14: 458 – 467. | |
dc.identifier.citedreference | Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., and Pirrone, N. ( 2013 ) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47: 4967 – 4983. | |
dc.identifier.citedreference | Drott, A., Bjorn, E., Bouchet, S., and Skyllberg, U. ( 2013 ) Refining thermodynamic constants for mercury (II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations. Environ Sci Technol 47: 4197 – 4203. | |
dc.identifier.citedreference | Dunham-Cheatham, S., Mishra, B., Myneni, S., and Fein, J.B. ( 2015 ) The effect of natural organic matter on the adsorption of mercury to bacterial cells. Geochim Cosmochim Acta 150: 1 – 10. | |
dc.identifier.citedreference | Enescu, M., Nagy, K.L., and Manceau, A. ( 2016 ) Nucleation of mercury sulfide by dealkylation. Sci Rep 6: 39359. | |
dc.identifier.citedreference | Fein, J.B., Yu, Q., Nam, J., and Yee, N. ( 2019 ) Bacterial cell envelope and extracellular sulfhydryl binding sites: their roles in metal binding and bioavailability. Chem Geol 521: 28 – 38. | |
dc.identifier.citedreference | Glazyrina, J., Materne, E.M., Dreher, T., Storm, D., Junne, S., Adams, T., et al. ( 2010 ) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Factories 9: 42. | |
dc.identifier.citedreference | Graham, A.M., Aiken, G.R., and Gilmour, C.C. ( 2012 ) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46: 2715 – 2723. | |
dc.identifier.citedreference | Graham, A.M., Aiken, G.R., and Gilmour, C.C. ( 2013 ) Effect of dissolved organic matter source and character on microbial Hg methylation in Hg–S–DOM solutions. Environ Sci Technol 47: 5746 – 5754. | |
dc.identifier.citedreference | Grégoire, D.S., Lavoie, N.C., and Poulain, A.J. ( 2018 ) Heliobacteria reveal fermentation as a key pathway for mercury reduction in anoxic environments. Environ Sci Technol 52: 4145 – 4153. | |
dc.identifier.citedreference | Grégoire, D.S., and Poulain, A.J. ( 2018 ) Shining light on recent advances in microbial mercury cycling. FACETS 3: 858 – 879. | |
dc.identifier.citedreference | Hinckley, E.-L.S., Crawford, J.T., Fakhraei, H., and Driscoll, C.T. ( 2020 ) A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat Geosci 13: 597 – 604. | |
dc.identifier.citedreference | Hinz, A.J., Stenzler, B., Poulain, A.J., and Bose, A. ( 2022 ) Golden gate assembly of aerobic and anaerobic microbial bioreporters. Appl Environ Microbiol 88: e01485-01421. | |
dc.identifier.citedreference | Hsu-Kim, H., Kucharzyk, K.H., Zhang, T., and Deshusses, M.A. ( 2013 ) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47: 2441 – 2456. | |
dc.identifier.citedreference | Hu, H., Lin, H., Zheng, W., Rao, B., Feng, X., Liang, L., et al. ( 2013a ) Mercury reduction and cell-surface adsorption by geobacter sulfurreducens PCA. Environ Sci Technol 47: 10922 – 10930. | |
dc.identifier.citedreference | Hu, H., Lin, H., Zheng, W., Tomanicek, S.J., Johs, A., Feng, X., et al. ( 2013b ) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6: 751 – 754. | |
dc.identifier.citedreference | Huynh, K., Liem-Nguyen, V., Feng, C., Lindberg, R., and Björn, E. ( 2020 ) Quantification of total concentration of thiol functional groups in environmental samples by titration with monobromo(trimethylammonio)bimane and determination with tandem mass spectrometry. Talanta 218: 121109. | |
dc.identifier.citedreference | Jørgensen, B.B., Findlay, A.J., and Pellerin, A. ( 2019 ) The biogeochemical sulfur cycle of marine sediments. Front Microbiol 10: 849. | |
dc.identifier.citedreference | Kalidass, B., Ul-Haque, M.F., Baral, B.S., DiSpirito, A.A., and Semrau, J.D. ( 2015 ) Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper. Appl Environ Microbiol 81: 1024 – 1031. | |
dc.identifier.citedreference | Kawakami, S.K., Gledhill, M., and Achterberg, E.P. ( 2006 ) Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress 1. J Phycol 42: 975 – 989. | |
dc.identifier.citedreference | Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., et al. ( 2000 ) Formation of Sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744 – 1747. | |
dc.identifier.citedreference | Leclerc, M., Planas, D., and Amyot, M. ( 2015 ) Relationship between extracellular low-molecular-weight thiols and mercury species in natural Lake Periphytic biofilms. Environ Sci Technol 49: 7709 – 7716. | |
dc.identifier.citedreference | Lehnherr, I., St, V.L., Louis, H.H., and Kirk, J.L. ( 2011 ) Methylation of inorganic mercury in polar marine waters. Nat Geosci 4: 298 – 302. | |
dc.identifier.citedreference | Liem-Nguyen, V., Skyllberg, U., and Björn, E. ( 2017a ) Thermodynamic modeling of the solubility and chemical speciation of mercury and methylmercury driven by organic thiols and micromolar sulfide concentrations in boreal wetland soils. Environ Sci Technol 51: 3678 – 3686. | |
dc.identifier.citedreference | Liem-Nguyen, V., Skyllberg, U., Nam, K., and Björn, E. ( 2017b ) Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory. Environ Chem 14: 243 – 253. | |
dc.identifier.citedreference | Lin, H., Lu, X., Liang, L., and Gu, B. ( 2015 ) Cysteine inhibits mercury methylation by Geobacter sulfurreducens PCA mutant ΔomcBESTZ. Environ Sci Technol Lett 2: 144 – 148. | |
dc.identifier.citedreference | Liu, Y.-R., Lu, X., Zhao, L., An, J., He, J.-Z., Pierce, E.M., et al. ( 2016 ) Effects of cellular sorption on mercury bioavailability and methylmercury production by Desulfovibrio desulfuricans ND132. Environ Sci Technol 50: 13335 – 13341. | |
dc.identifier.citedreference | Manceau, A., Lemouchi, C., Enescu, M., Gaillot, A.-C., Lanson, M., Magnin, V., et al. ( 2015 ) Formation of mercury sulfide from Hg(II)–thiolate complexes in natural organic matter. Environ Sci Technol 49: 9787 – 9796. | |
dc.identifier.citedreference | Mangal, V., Stock, N.L., and Guéguen, C. ( 2016 ) Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry. Anal Bioanal Chem 408: 1891 – 1900. | |
dc.identifier.citedreference | Mazrui, N.M., Seelen, E., King’ondu, C.K., Thota, S., Awino, J., Rouge, J., et al. ( 2018 ) The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter. Environ Sci Process Impacts 20: 642 – 656. | |
dc.identifier.citedreference | Mills, J.V., Antler, G., and Turchyn, A.V. ( 2016 ) Geochemical evidence for cryptic sulfur cycling in salt marsh sediments. Earth Planet Sci Lett 453: 23 – 32. | |
dc.identifier.citedreference | Mishra, B., Shoenfelt, E., Yu, Q., Yee, N., Fein, J.B., and Myneni, S.C.B. ( 2017 ) Stoichiometry of mercury-thiol complexes on bacterial cell envelopes. Chem Geol 464: 137 – 146. | |
dc.identifier.citedreference | Ndu, U., Barkay, T., Mason, R.P., Schartup, A.T., Al-Farawati, R., Liu, J., and Reinfelder, J.R. ( 2015 ) The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria. PLoS One 10: e0138333. | |
dc.identifier.citedreference | Ndu, U., Mason, R.P., Zhang, H., Lin, S., and Visscher, P.T. ( 2012 ) Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter. Appl Environ Microbiol 78: 7276 – 7282. | |
dc.identifier.citedreference | Obrist, D., Kirk, J.L., Zhang, L., Sunderland, E.M., Jiskra, M., and Selin, N.E. ( 2018 ) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47: 116 – 140. | |
dc.identifier.citedreference | Olsen, T.A., Brandt, C.C., and Brooks, S.C. ( 2016 ) Periphyton biofilms influence net methylmercury production in an industrially contaminated system. Environ Sci Technol 50: 10843 – 10850. | |
dc.identifier.citedreference | Ortiz, V.L., Mason, R.P., and Ward, J.E. ( 2015 ) An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Mar Chem 177: 753 – 762. | |
dc.identifier.citedreference | Parkhurst, D.L.A. ( 2013 ) Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Reston, Virginia: U.S. Department of the Interior, U.S. Geological Survey, p. 497. | |
dc.identifier.citedreference | Pester, M., Knorr, K.-H., Friedrich, M., Wagner, M., and Loy, A. ( 2012 ) Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front Microbiol 3: 72. | |
dc.identifier.citedreference | Pham, A.L.-T., Morris, A., Zhang, T., Ticknor, J., Levard, C., and Hsu-Kim, H. ( 2014 ) Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: structural properties, aggregation, and biotransformation. Geochim Cosmochim Acta 133: 204 – 215. | |
dc.identifier.citedreference | Podar, M., Gilmour, C.C., Brandt, C.C., Soren, A., Brown, S.D., Crable, B.R., et al. ( 2015 ) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1: e1500675. | |
dc.identifier.citedreference | Poulin, B.A., Gerbig, C.A., Kim, C.S., Stegemeier, J.P., Ryan, J.N., and Aiken, G.R. ( 2017 ) Effects of sulfide concentration and dissolved organic matter characteristics on the structure of nanocolloidal metacinnabar. Environ Sci Technol 51: 13133 – 13142. | |
dc.identifier.citedreference | Raven, M.R., Keil, R.G., and Webb, S.M. ( 2021 ) Microbial sulfate reduction and organic sulfur formation in sinking marine particles. Science 371: 178 – 181. | |
dc.identifier.citedreference | Regnell, O., and Watras, C.J. ( 2019 ) Microbial mercury methylation in aquatic environments: a critical review of published field and laboratory studies. Environ Sci Technol 53: 4 – 19. | |
dc.identifier.citedreference | Schaefer, J.K., and Morel, F.M.M. ( 2009 ) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2: 123 – 126. | |
dc.identifier.citedreference | Schaefer, J.K., Rocks, S.S., Zheng, W., Liang, L., Gu, B., and Morel, F.M.M. ( 2011 ) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci U S A 108: 8714 – 8719. | |
dc.identifier.citedreference | Schaefer, J.K., Szczuka, A., and Morel, F.M.M. ( 2014 ) Effect of divalent metals on Hg(II) uptake and methylation by bacteria. Environ Sci Technol 48: 3007 – 3013. | |
dc.identifier.citedreference | Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M. ( 2002 ) Air–water exchange. In Environmental Organic Chemistry, Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M. (eds). Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/0471649643.ch20. | |
dc.identifier.citedreference | Semrau, J., and Gu, B. ( 2020 ). Methanotrophic-Mediated Methylmercury Transformation: Characterization of Products, Mechanism, and Environmental Significance (Final Technical Report). https://doi.org/10.2172/1692379 | |
dc.identifier.citedreference | Shakeri Yekta, S., Svensson, B.H., Björn, A., and Skyllberg, U. ( 2014 ) Thermodynamic modeling of iron and trace metal solubility and speciation under sulfidic and ferruginous conditions in full scale continuous stirred tank biogas reactors. Appl Geochem 47: 61 – 73. | |
dc.identifier.citedreference | Si, Y., Zou, Y., Liu, X., Si, X., and Mao, J. ( 2015 ) Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere 122: 206 – 212. | |
dc.identifier.citedreference | Song, Y., Adediran, G.A., Jiang, T., Hayama, S., Björn, E., and Skyllberg, U. ( 2020 ) Toward an internally consistent model for Hg(II) chemical speciation calculations in bacterium–natural organic matter–low molecular mass thiol systems. Environ Sci Technol 54: 8094 – 8103. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.