Show simple item record

Boosted Charge-Carrier Transport in Triple-Cation Perovskites by Ultrasonic Vibration Post Treatment

dc.contributor.authorWang, Yuzhuo
dc.contributor.authorAhmadian-Yazdi, Mohammad-Reza
dc.contributor.authorNi, Yangyang
dc.contributor.authorJiang, Yexin
dc.contributor.authorEslamian, Morteza
dc.contributor.authorJin, Zuanming
dc.contributor.authorChen, Qianli
dc.date.accessioned2022-08-02T18:59:08Z
dc.date.available2023-08-02 14:59:06en
dc.date.available2022-08-02T18:59:08Z
dc.date.issued2022-07
dc.identifier.citationWang, Yuzhuo; Ahmadian-Yazdi, Mohammad-Reza ; Ni, Yangyang; Jiang, Yexin; Eslamian, Morteza; Jin, Zuanming; Chen, Qianli (2022). "Boosted Charge- Carrier Transport in Triple- Cation Perovskites by Ultrasonic Vibration Post Treatment." Advanced Electronic Materials 8(7): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/173144
dc.description.abstractUltrasonic vibration imposed on the substrate of a drying perovskite solution film has previously been proposed as a nearly annealing-free method to improve film quality and thus the photovoltaic performance for perovskite solar cells. However, an in-depth understanding of the underlying mechanism of the improved film quality via ultrasonic vibration is still lacking. In this work, the effects of substrate vibration post treatment on the carrier lifetime and mobility are studied in triple-cation perovskite films. With 80 s of annealing-free vibration, the perovskite film demonstrates much stronger photoluminescence intensity and much longer carrier lifetime up to 2.634 µs, 2 orders of magnitude longer than that of the thermal annealed films. Optical pump terahertz probe spectroscopy reveals that the charge-carrier mobility increases to 121 ± 44 cm2 V−1 s−1 when subjected to 80 s vibration followed by annealing. Such mobility is about 80 ± 40 cm2 V−1 s−1 higher than that of other polycrystalline organic–inorganic hybrid perovskite thin films of similar composition. The diffusion length is improved to nearly 1.5 times. The new understanding on the vibration-induced charge-carrier transport properties paves the way for the application of ultrasonic vibration toward the performance improvement of perovskite-based electronic devices.Through ultrasonic vibration imposed on as-spun films at proper power and duration, the charge-carrier mobility in the perovskite layer increases to 121 ± 44 cm2 V−1 s−1, about 80 ± 40 cm2 V−1 s−1 higher than other polycrystalline hybrid perovskite films of similar composition. Ultrasonic vibration post treatment effectively suppresses the overall charge-carrier trapping rate in the perovskite layer.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetal halide perovskites
dc.subject.otherterahertz spectroscopy
dc.subject.otherultrasonic vibration post treatment
dc.subject.othercarrier mobility
dc.subject.othercharge-carrier transport
dc.titleBoosted Charge-Carrier Transport in Triple-Cation Perovskites by Ultrasonic Vibration Post Treatment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173144/1/aelm202101286.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173144/2/aelm202101286-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173144/3/aelm202101286_am.pdf
dc.identifier.doi10.1002/aelm.202101286
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceT. Unuma, N. Yamada, A. Nakamura, H. Kishida, S.-C. Lee, E.-Y. Hong, S.-H. Lee, O.-P. Kwon, Appl. Phys. Lett. 2013, 103, 053303.
dc.identifier.citedreferenceY. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 2014, 136, 11610.
dc.identifier.citedreferenceZ. Jin, D. Gehrig, C. Dyer-Smith, E. J. Heilweil, F. Laquai, M. Bonn, D. Turchinovich, J. Phys. Chem. Lett. 2014, 5, 3662.
dc.identifier.citedreferenceP. W. Anderson, Phys. Rev. 1958, 109, 1492.
dc.identifier.citedreferenceD. G. Cooke, F. C. Krebs, P. U. Jepsen, Phys. Rev. Lett. 2012, 108, 056603.
dc.identifier.citedreferenceN. Smith, Phys. Rev. B 2001, 64, 155106.
dc.identifier.citedreferenceZ. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. J. Sutton, A. A. Haghighirad, H. J. Snaith, D. K. Maude, P. Plochocka, R. J. Nicholas, ACS Energy Lett. 2017, 2, 1621.
dc.identifier.citedreferenceP. D. Cunningham, L. M. Hayden, H.-L. Yip, A. K.-Y. Jen, J. Phys. Chem. B 2009, 113, 15427.
dc.identifier.citedreferenceJ. M. Frost, Phys. Rev. B 2017, 96, 195202.
dc.identifier.citedreferenceK. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T.-W. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Energy Environ. Sci. 2016, 9, 962.
dc.identifier.citedreferenceC. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2013, 26, 1584.
dc.identifier.citedreferenceW. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston, L. M. Herz, Adv. Mater. 2015, 27, 7938.
dc.identifier.citedreferenceW. Rehman, D. P. McMeekin, J. B. Patel, R. L. Milot, M. B. Johnston, H. J. Snaith, L. M. Herz, Energy Environ. Sci. 2017, 10, 361.
dc.identifier.citedreferenceD. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
dc.identifier.citedreferenceD. P. McMeekin, Z. Wang, W. Rehman, F. Pulvirenti, J. B. Patel, N. K. Noel, M. B. Johnston, S. R. Marder, L. M. Herz, H. J. Snaith, Adv. Mater. 2017, 29, 1607039.
dc.identifier.citedreferenceC. Wang, C. Zhang, S. Wang, G. Liu, H. Xia, S. Tong, J. He, D. Niu, C. Zhou, K. Ding, Y. Gao, J. Yang, Sol. RRL 2018, 2, 1700209.
dc.identifier.citedreferenceS. Prathapani, D. Choudhary, S. Mallick, P. Bhargava, A. Yella, CrystEngComm 2017, 19, 3834.
dc.identifier.citedreferenceS. Wang, W. Dong, X. Fang, Q. Zhang, S. Zhou, Z. Deng, R. Tao, J. Shao, R. Xia, C. Song, L. Hu, J. Zhu, Nanoscale 2016, 8, 6600.
dc.identifier.citedreferenceM.-R. Ahmadian-Yazdi, M. Eslamian, Langmuir 2021, 37, 2596.
dc.identifier.citedreferenceZ.-G. Yu, J. Phys. Chem. Lett. 2016, 7, 3078.
dc.identifier.citedreferenceA. Filippetti, A. Mattoni, C. Caddeo, M. I. Saba, P. Delugas, Phys. Chem. Chem. Phys. 2016, 18, 15352.
dc.identifier.citedreferenceA. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, L. M. Herz, Nat. Commun. 2016, 7, 11755.
dc.identifier.citedreferenceY. Tu, J. Wu, Z. Lan, X. He, J. Dong, J. Jia, P. Guo, J. Lin, M. Huang, Y. Huang, Sci. Rep. 2017, 7, 44603.
dc.identifier.citedreferenceN. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
dc.identifier.citedreferenceF. Zabihi, M. Eslamian, Crystals 2018, 8, 60.
dc.identifier.citedreferenceD. Shen, A. Pang, Y. Li, J. Dou, M. Wei, Chem. Commun. 2018, 54, 1253.
dc.identifier.citedreferenceL. Tian, W. Zhang, Y. Huang, F. Wen, H. Yu, Y. Li, Q. Wang, C. Peng, Z. Ma, T. Hu, L. Du, M. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 29344.
dc.identifier.citedreferenceO. K. Matar, S. Kumar, R. V. Craster, J. Fluid Mech. 2004, 520, 243.
dc.identifier.citedreferenceS. Shklyaev, M. Khenner, A. A. Alabuzhev, Phys. Rev. E 2008, 77, 036320.
dc.identifier.citedreferenceS. Shklyaev, A. A. Alabuzhev, M. Khenner, Phys. Rev. E 2009, 79, 051603.
dc.identifier.citedreferenceM. Bestehorn, Phys. Fluids 2013, 25, 114106.
dc.identifier.citedreferenceT. Khan, M. Eslamian, J. Fluid Mech. 2020, 900, 30.
dc.identifier.citedreferenceM.-R. Ahmadian-Yazdi, M. Habibi, M. Eslamian, Appl. Sci. 2018, 8, 308.
dc.identifier.citedreferenceH. Xiong, F. Zabihi, H. Wang, Q. Zhang, M. Eslamian, Nanoscale 2018, 10, 8526.
dc.identifier.citedreferenceX. Zhang, F. Zabihi, H. Xiong, M. Eslamian, C. Hou, M. Zhu, H. Wang, Q. Zhang, Chem. Eng. J. 2020, 394, 124887.
dc.identifier.citedreferenceA. Rahimzadeh, M. Eslamian, Chem. Eng. Sci. 2017, 158, 587.
dc.identifier.citedreferenceM.-R. Ahmadian-Yazdi, C. Barratt, A. Rahimzadeh, M. Eslamian, ACS Omega 2019, 5, 808.
dc.identifier.citedreferenceM. Eslamian, Prog. Org. Coat. 2017, 113, 60.
dc.identifier.citedreferenceY. Xie, F. Zabihi, M. Eslamian, J. Photonics Energy 2016, 6, 045502.
dc.identifier.citedreferenceF. Michael, Abstr. Pap. Printed Philos. Trans. R. Soc., London 1837, 3, 49.
dc.identifier.citedreferenceS. Kumar, O. K. Matar, J. Fluid Mech. 2002, 466, 249.
dc.identifier.citedreferenceS. Kumar, O. K. Matar, Phys. Fluids 2004, 16, 39.
dc.identifier.citedreferenceK. Gao, Y. Kan, X. Chen, F. Liu, B. Kan, L. Nian, X. Wan, Y. Chen, X. Peng, T. P. Russell, Y. Cao, A. K. Y. Jen, Adv. Mater. 2020, 32, 1906129.
dc.identifier.citedreferenceB. Dou, V. L. Pool, M. F. Toney, M. F. van Hest, Chem. Mater. 2017, 29, 5931.
dc.identifier.citedreferenceD. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li, L. Feng, ACS Appl. Mater. Interfaces 2015, 7, 16330.
dc.identifier.citedreferenceJ. A. Aguiar, S. Wozny, N. R. Alkurd, M. Yang, L. Kovarik, T. G. Holesinger, M. Al-Jassim, K. Zhu, W. Zhou, J. J. Berry, ACS Energy Lett. 2016, 1, 155.
dc.identifier.citedreferenceM. Kim, G.-H. Kim, K. S. Oh, Y. Jo, H. Yoon, K.-H. Kim, H. Lee, J. Y. Kim, D. S. Kim, ACS Nano 2017, 11, 6057.
dc.identifier.citedreferenceF. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel, W. C. Choy, ACS Nano 2015, 9, 639.
dc.identifier.citedreferenceC. M. Soe, C. C. Stoumpos, B. Harutyunyan, E. F. Manley, L. X. Chen, M. J. Bedzyk, T. J. Marks, M. G. Kanatzidis, ChemSusChem 2016, 9, 2656.
dc.identifier.citedreferenceA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
dc.identifier.citedreferenceBest research-cell efficiency chart, http://www.nrel.gov/pv/cell-efficiency.html (accessed: June 2021 ).
dc.identifier.citedreferenceM.-R. Ahmadian-Yazdi, N. Gholampour, M. Eslamian, ACS Appl. Energy Mater. 2020, 3, 3134.
dc.identifier.citedreferenceN. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699.
dc.identifier.citedreferenceQ. V. Le, K. Hong, H. W. Jang, S. Y. Kim, Adv. Electron. Mater. 2018, 4, 1800335.
dc.identifier.citedreferenceL. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 5404.
dc.identifier.citedreferenceY. Guo, C. Liu, H. Tanaka, E. Nakamura, J. Phys. Chem. Lett. 2015, 6, 535.
dc.identifier.citedreferenceC. Y. Wu, W. Peng, T. Fang, B. Wang, C. Xie, L. Wang, W. H. Yang, L. B. Luo, Adv. Electron. Mater. 2019, 5, 1900135.
dc.identifier.citedreferenceH. Gu, S. C. Chen, Q. Zheng, Adv. Opt. Mater. 2020, 9, 2001637.
dc.identifier.citedreferenceH. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X.-Y. Zhu, Nat. Mater. 2015, 14, 636.
dc.identifier.citedreferenceS. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 6804.
dc.identifier.citedreferenceQ. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, Q. Xiong, Small Methods 2017, 1, 1700163.
dc.identifier.citedreferenceH. Kim, J. S. Han, J. Choi, S. Y. Kim, H. W. Jang, Small Methods 2018, 2, 1700310.
dc.identifier.citedreferenceT. Wu, W. Pisula, M. Y. Rashid, P. Gao, Adv. Electron. Mater. 2019, 5, 1900444.
dc.identifier.citedreferenceC. Qin, F. Zhang, L. Qin, X. Liu, H. Ji, L. Li, Y. Hu, Z. Lou, Y. Hou, F. Teng, Adv. Electron. Mater. 2021, 7, 2100384.
dc.identifier.citedreferenceM. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989.
dc.identifier.citedreferenceM. Stolterfoht, C. M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio, D. Neher, Energy Environ. Sci. 2017, 10, 1530.
dc.identifier.citedreferenceT. Singh, T. Miyasaka, Adv. Energy Mater. 2017, 8, 1700677.
dc.identifier.citedreferenceT. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka, Adv. Funct. Mater. 2018, 28, 1706287.
dc.identifier.citedreferenceN. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408.
dc.identifier.citedreferenceM. De Bastiani, A. J. Mirabelli, Y. Hou, F. Gota, E. Aydin, T. G. Allen, J. Troughton, A. S. Subbiah, F. H. Isikgor, J. Liu, L. Xu, B. Chen, E. Van Kerschaver, D. Baran, B. Fraboni, M. F. Salvador, U. W. Paetzold, E. H. Sargent, S. De Wolf, Nat. Energy 2021, 6, 167.
dc.identifier.citedreferenceK. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T. P. Russell, H. Wu, X. Peng, Adv. Mater. 2016, 28, 4727.
dc.identifier.citedreferenceS. Guo, Y. Zhao, K. Bu, Y. Fu, H. Luo, M. Chen, M. P. Hautzinger, Y. Wang, S. Jin, W. Yang, X. Lü, Angew. Chem. 2020, 132, 17686.
dc.identifier.citedreferenceC.-X. Chen, J. Wang, M. Gao, D. Shi, Cryst. Growth Des. 2020, 21, 45.
dc.identifier.citedreferenceF. Lang, M. Jošt, J. Bundesmann, A. Denker, S. Albrecht, G. Landi, H.-C. Neitzert, J. Rappich, N. H. Nickel, Energy Environ. Sci. 2019, 12, 1634.
dc.identifier.citedreferenceL. Zhang, Y. Liu, X. He, H. Ye, J. Leng, X. Ren, S. Jin, S. Liu, J. Phys. Chem. C 2020, 124, 22011.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.