Show simple item record

Increasing the Pressure-Free Stripping Capacity of the Lithium Metal Anode in Solid-State-Batteries by Carbon Nanotubes

dc.contributor.authorFuchs, Till
dc.contributor.authorHaslam, Catherine G.
dc.contributor.authorMoy, Alexandra C.
dc.contributor.authorLerch, Christian
dc.contributor.authorKrauskopf, Thorben
dc.contributor.authorSakamoto, Jeff
dc.contributor.authorRichter, Felix H.
dc.contributor.authorJanek, Jürgen
dc.date.accessioned2022-08-02T18:59:18Z
dc.date.available2023-08-02 14:59:16en
dc.date.available2022-08-02T18:59:18Z
dc.date.issued2022-07
dc.identifier.citationFuchs, Till; Haslam, Catherine G.; Moy, Alexandra C.; Lerch, Christian; Krauskopf, Thorben; Sakamoto, Jeff; Richter, Felix H.; Janek, Jürgen (2022). "Increasing the Pressure- Free Stripping Capacity of the Lithium Metal Anode in Solid- State- Batteries by Carbon Nanotubes." Advanced Energy Materials 12(26): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/173147
dc.description.abstractLithium metal is the key anode material for solid-state-batteries as its successful implementation will drastically increase their energy and power densities. However, anode contact loss during stripping leads to dendrites upon plating and subsequent cell failure. Design strategies to mitigate these issues are crucial to enable the use of lithium metal anodes. This paper reports the dissolution kinetics of composite anodes made of lithium metal and carbon nanotubes (CNTs) with a garnet-type solid electrolyte (SE). In addition to an enhancement of the effective diffusion within the anode, its dissolution is fundamentally changed from being 2D to 3D. By maintaining contact with the SE, the CNTs facilitate lithium transport to the interface, which yields more than 20 mAh cm−2 discharge capacity at 100 µA cm−2 without the application of external stack pressure (>1 MPa). Conclusions drawn from electrochemical data on the anode microstructure are validated using cryo-focused-ion-beam scanning electron microscopy and correlated with the mechanical properties. Micro-indentation, acoustic analysis, and stress–strain testing show that mechanical properties of the anode, like yield strength and hardness, are adjustable. Overall, it is shown that the mechanical and electrochemical properties of Li–CNT composite electrodes can be tailored to suit the requirements of a practical cell.This work demonstrates the working principle of composite electrodes consisting of lithium and carbon nanotubes in contact with garnet solid electrolyte, Lithium lanthanum zirconium oxide. Detailed analysis with impedance spectroscopy, electron imaging, and mechanical testing, shows that these composites are superior to pure lithium if low stack pressure is applied during stripping.
dc.publisherWiley
dc.subject.othermechanical properties
dc.subject.othercarbon nanotubes
dc.subject.othercomposite lithium-anodes
dc.subject.otherdiffusion
dc.subject.otherthree-dimensional lithium dissolution
dc.titleIncreasing the Pressure-Free Stripping Capacity of the Lithium Metal Anode in Solid-State-Batteries by Carbon Nanotubes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173147/1/aenm202201125-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173147/2/aenm202201125.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173147/3/aenm202201125_am.pdf
dc.identifier.doi10.1002/aenm.202201125
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceY. Matsuki, K. Noi, M. Deguchi, A. Sakuda, A. Hayashi, M. Tatsumisago, J. Electrochem. Soc. 2019, 166, A5470.
dc.identifier.citedreferenceS. Schweidler, L. De Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, J. Phys. Chem. C 2018, 122, 8829.
dc.identifier.citedreferenceV. Petkov, A. Timmons, J. Camardese, Y. Ren, J. Phys.: Condens. Matter 2011, 23, 435003.
dc.identifier.citedreferenceY. Shao, H. Wang, Z. Gong, D. Wang, B. Zheng, J. Zhu, Y. Lu, Y. S. Hu, X. Guo, H. Li, X. Huang, Y. Yang, C. W. Nan, L. Chen, ACS Energy Lett. 2018, 3, 1212.
dc.identifier.citedreferenceJ. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang, Y. Xie, S. Li, J. Li, Y. Huang, Natl. Sci. Rev. 2020, 7, 1208.
dc.identifier.citedreferenceD. N. Futaba, T. Yamada, K. Kobashi, M. Yumura, K. Hata, J. Am. Chem. Soc. 2011, 133, 5716.
dc.identifier.citedreferenceT. Fuchs, B. Mogwitz, S. Otto, S. Passerini, F. H. Richter, J. Janek, Batteries Supercaps 2021, 4, 1145.
dc.identifier.citedreferenceJ. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater. 1990, 2, 132.
dc.identifier.citedreferenceA. Sharafi, C. G. Haslam, R. D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. A 2017, 5, 21491.
dc.identifier.citedreferenceP. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2018, 3, 16.
dc.identifier.citedreferenceH. J. S. Sand, London, Edinburgh Dublin Philos. Mag. J. Sci. 1901, 1, 45.
dc.identifier.citedreferenceL. Stolz, G. Homann, M. Winter, J. Kasnatscheew, Mater. Today 2021, 44, 9.
dc.identifier.citedreferenceT. H. Loeber, B. Laegel, S. Wolff, S. Schuff, F. Balle, T. Beck, D. Eifler, J. H. Fitschen, G. Steidl, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2017, 35, 06GK01.
dc.identifier.citedreferenceF. Santoro, E. Neumann, G. Panaitov, A. Offenhäusser, Microelectron. Eng. 2014, 124, 17.
dc.identifier.citedreferenceS. Liu, L. Sun, J. Gao, K. Li, J. Microsc. 2018, 272, 3.
dc.identifier.citedreferenceD. P. Adams, T. M. Mayer, M. J. Vasile, K. Archuleta, Appl. Surf. Sci. 2006, 252, 2432.
dc.identifier.citedreferenceG. Ran, J. Zhang, Q. Wei, S. Xi, X. Zu, L. Wang, Appl. Phys. Lett. 2009, 94, 2007.
dc.identifier.citedreferenceI. Koponen, M. Hautala, O. P. Sievänen, Phys. Rev. Lett. 1997, 78, 2612.
dc.identifier.citedreferenceW. D. Callister, Materials Science and Engineering: An Introduction, 8th ed., Wiley, Hoboken, NJ, USA 2009.
dc.identifier.citedreferenceP. Barai, G. J. Weng, Int. J. Plast. 2011, 27, 539.
dc.identifier.citedreferenceS.-Y. Fu, B. Lauke, Compos. Sci. Technol. 1996, 56, 1179.
dc.identifier.citedreferenceI. J. Beyerlein, S. L. Phoenix, Compos. Sci. Technol. 1996, 56, 75.
dc.identifier.citedreferenceA. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, J. Mater. Sci. 2018, 54, 2585.
dc.identifier.citedreferenceA. Masias, N. Felten, J. Sakamoto, J. Mater. Res. 2021, 36, 729.
dc.identifier.citedreferenceW. S. LePage, Y. Chen, E. Kazyak, K.-H. Chen, A. J. Sanchez, A. Poli, E. M. Arruda, M. D. Thouless, N. P. Dasgupta, J. Electrochem. Soc. 2019, 166, A89.
dc.identifier.citedreferenceP. K. Mallick, Fiber-Reinforced Composites, Taylor & Francis Group, LLC, Boca Raton, FL, USA 2007.
dc.identifier.citedreferenceE. G. Herbert, S. A. Hackney, V. Thole, N. J. Dudney, P. S. Phani, J. Mater. Res. 2018, 33, 1347.
dc.identifier.citedreferenceN. J. Taylor, S. Stangeland-Molo, C. G. Haslam, A. Sharafi, T. Thompson, M. Wang, R. Garcia-Mendez, J. Sakamoto, J. Power Sources 2018, 396, 314.
dc.identifier.citedreferenceR. D. Rogler, H. Löbl, J. Schmidt, Eur. Trans. Electr. Power 1997, 7, 331.
dc.identifier.citedreferenceK. D. Kim, D. D. L. Chung, J. Electron. Mater. 2002, 31, 933.
dc.identifier.citedreferenceJ. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.
dc.identifier.citedreferenceS. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, J. Janek, Nat. Energy 2020, 5, 259.
dc.identifier.citedreferenceY. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 2020, 5, 299.
dc.identifier.citedreferenceT. Krauskopf, F. H. Richter, W. G. Zeier, J. Janek, Chem. Rev. 2020, 120, 7745.
dc.identifier.citedreferenceY. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.
dc.identifier.citedreferenceY. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251.
dc.identifier.citedreferenceC. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J. G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.
dc.identifier.citedreferenceT. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463.
dc.identifier.citedreferenceT. Krauskopf, B. Mogwitz, H. Hartmann, D. K. Singh, W. G. Zeier, J. Janek, Adv. Energy Mater. 2020, 10, 2000945.
dc.identifier.citedreferenceE. Kazyak, S. William, C. Haslam, J. Sakamoto, N. P. Dasgupta, E. Kazyak, R. Garcia-mendez, W. S. Lepage, A. Sharafi, A. L. Davis, A. J. Sanchez, K. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.
dc.identifier.citedreferenceI. Seymour, A. Aguadero, J. Mater. Chem. A 2021, 9, 19901.
dc.identifier.citedreferenceS. S. Shishvan, N. A. Fleck, V. S. Deshpande, J. Power Sources 2021, 488, 229437.
dc.identifier.citedreferenceU. Roy, N. A. Fleck, V. S. Deshpande, Extreme Mech. Lett. 2021, 46, 101307.
dc.identifier.citedreferenceJ. Janek, S. Majoni, Ber. Bunsen-Ges. Phys. Chem. 1995, 99, 14.
dc.identifier.citedreferenceM. J. Wang, R. Choudhury, J. Sakamoto, Joule 2019, 3, 2165.
dc.identifier.citedreferenceX. Zhang, Q. J. Wang, K. L. Harrison, S. A. Roberts, S. J. Harris, Cell Rep. Phys. Sci. 2019, 1, 100012.
dc.identifier.citedreferenceT. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier, J. Janek, Adv. Energy Mater. 2019, 9, 1902568.
dc.identifier.citedreferenceG. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, Mater. Today 2019, 22, 50.
dc.identifier.citedreferenceS. Xu, D. W. McOwen, C. Wang, L. Zhang, W. Luo, C. Chen, Y. Li, Y. Gong, J. Dai, Y. Kuang, C. Yang, T. R. Hamann, E. D. Wachsman, L. Hu, Nano Lett. 2018, 18, 3926.
dc.identifier.citedreferenceC. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, L. Hu, Nano Lett. 2017, 17, 565.
dc.identifier.citedreferenceK. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Sci. Adv. 2017, 3, e1601659.
dc.identifier.citedreferenceH. Xie, C. Yang, Y. Ren, S. Xu, T. R. Hamann, D. W. Mcowen, E. D. Wachsman, L. Hu, Nano Lett. 2021, 21, 6163.
dc.identifier.citedreferenceA. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961.
dc.identifier.citedreferenceN. Nitta, G. Yushin, Part. Part. Syst. Charact. 2014, 31, 317.
dc.identifier.citedreferenceD. Lin, Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626.
dc.identifier.citedreferenceJ. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P. C. Hsu, J. Wang, H. M. Cheng, Y. Cui, Nat. Nanotechnol. 2017, 12, 993.
dc.identifier.citedreferenceH. Chen, Y. Yang, D. T. Boyle, Y. K. Jeong, R. Xu, L. S. de Vasconcelos, Z. Huang, H. Wang, H. Wang, W. Huang, H. Li, J. Wang, H. Gu, R. Matsumoto, K. Motohashi, Y. Nakayama, K. Zhao, Y. Cui, Nat. Energy 2021, 6, 790.
dc.identifier.citedreferenceA. S. Cavanagh, C. A. Wilson, A. W. Weimer, S. M. George, Nanotechnology 2009, 20, 255602.
dc.identifier.citedreferenceY. Maniwa, R. Fujiwara, H. Kira, H. Tou, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara, X. Zhao, S. Iijima, S. Iijima, Y. Ando, Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 731051.
dc.identifier.citedreferenceA. N. Popova, Coke Chem. 2017, 60, 361.
dc.identifier.citedreferenceB. E. Warren, Phys. Rev. 1941, 59, 693.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.