Show simple item record

Tree crown damage and its effects on forest carbon cycling in a tropical forest

dc.contributor.authorNeedham, Jessica F.
dc.contributor.authorArellano, Gabriel
dc.contributor.authorDavies, Stuart J.
dc.contributor.authorFisher, Rosie A.
dc.contributor.authorHammer, Valerie
dc.contributor.authorKnox, Ryan G.
dc.contributor.authorMitre, David
dc.contributor.authorMuller-Landau, Helene C.
dc.contributor.authorZuleta, Daniel
dc.contributor.authorKoven, Charlie D.
dc.date.accessioned2022-09-26T16:01:09Z
dc.date.available2023-10-26 12:01:07en
dc.date.available2022-09-26T16:01:09Z
dc.date.issued2022-09
dc.identifier.citationNeedham, Jessica F.; Arellano, Gabriel; Davies, Stuart J.; Fisher, Rosie A.; Hammer, Valerie; Knox, Ryan G.; Mitre, David; Muller-Landau, Helene C. ; Zuleta, Daniel; Koven, Charlie D. (2022). "Tree crown damage and its effects on forest carbon cycling in a tropical forest." Global Change Biology (18): 5560-5574.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/174757
dc.description.abstractCrown damage can account for over 23% of canopy biomass turnover in tropical forests and is a strong predictor of tree mortality; yet, it is not typically represented in vegetation models. We incorporate crown damage into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to evaluate how lags between damage and tree recovery or death alter demographic rates and patterns of carbon turnover. We represent crown damage as a reduction in a tree’s crown area and leaf and branch biomass, and allow associated variation in the ratio of aboveground to belowground plant tissue. We compare simulations with crown damage to simulations with equivalent instant increases in mortality and benchmark results against data from Barro Colorado Island (BCI), Panama. In FATES, crown damage causes decreases in growth rates that match observations from BCI. Crown damage leads to increases in carbon starvation mortality in FATES, but only in configurations with high root respiration and decreases in carbon storage following damage. Crown damage also alters competitive dynamics, as plant functional types that can recover from crown damage outcompete those that cannot. This is a first exploration of the trade- off between the additional complexity of the novel crown damage module and improved predictive capabilities. At BCI, a tropical forest that does not experience high levels of disturbance, both the crown damage simulations and simulations with equivalent increases in mortality does a reasonable job of capturing observations. The crown damage module provides functionality for exploring dynamics in forests with more extreme disturbances such as cyclones and for capturing the synergistic effects of disturbances that overlap in space and time.Crown damage is a strong predictor of tree mortality and an important component of the carbon cycle. We introduced crown damage into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) and benchmarked simulations against data from Barro Colorado Island (a) photo credit Pablo Narváez. In FATES, damaged trees lose crown biomass and crown area (b). The main ecosystem impacts of crown damage were due to increases in mortality, although damage itself led to changes in stand structure and decreases in aboveground biomass. Plants that allocate carbon to regrowing their crowns outcompeted those that allocate carbon to diameter growth (c).
dc.publisherSpringer Berlin Heidelberg
dc.publisherWiley Periodicals, Inc.
dc.subject.othercrown damage
dc.subject.otherforest disturbance
dc.subject.othermortality
dc.subject.othertropical forests
dc.subject.otheraboveground biomass
dc.subject.othercanopy turnover
dc.subject.othercarbon residence time
dc.titleTree crown damage and its effects on forest carbon cycling in a tropical forest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174757/1/gcb16318_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174757/2/gcb16318.pdf
dc.identifier.doi10.1111/gcb.16318
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceNewbery, D. M., & Zahnd, C. ( 2021 ). Change in liana density over 30- years in a Bornean rain forest supports the escape hypothesis. Ecosphere, 12 ( 8 ), e03537. https://doi.org/10.1002/ecs2.3537
dc.identifier.citedreferenceMcDowell, N. G., & Sevanto, S. ( 2010 ). The mechanisms of carbon starvation: How, when, or does it even occur at all? The New Phytologist, 186 ( 2 ), 264 - 266.
dc.identifier.citedreferenceMcDowell, N., Allen, C. D., Anderson- Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A., Espirito- Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D., Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., - ¦ Xu, X. ( 2018 ). Drivers and mechanisms of tree mortality in moist tropical forests. The New Phytologist, 219 ( 3 ), 851 - 869.
dc.identifier.citedreferenceMcDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. ( 2008 ). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? The New Phytologist, 178 ( 4 ), 719 - 739.
dc.identifier.citedreferenceMoorcroft, P. R., Hurtt, G. C., & Pacala, S. W. ( 2001 ). A method for scaling vegetation dynamics: The ecosystem demography model (ed). Ecological Monographs, 71 ( 4 ), 557 - 586.
dc.identifier.citedreferenceNeedham J., Arellano G., Davies S., Fisher R., Hammer V., Knox R., Mitre D., Muller- Landau H., Zuleta D., Koven C. ( 2022 ): FATES crown damage simulation outputs 2022. 1.0. NGEE Tropics Data Collection. (dataset). https://doi.org/10.15486/ngt/1871026
dc.identifier.citedreferenceNegrón- Juárez, R. I., Holm, J. A., Faybishenko, B., Magnabosco- Marra, D., Fisher, R. A., Shuman, J. K., de Araujo, A. C., Riley, W. J., & Chambers, J. Q. ( 2020 ). Landsat near- infrared (NIR) band and ELM- FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 17 ( 23 ), 6185 - 6205.
dc.identifier.citedreferenceOleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton, P. E., Bozbiyik, A., Risher, R., Heald, C. L., Kluzek, E., Lamarque, J.- F., Lawrence, P. J., Leung, R. L., - ¦ Yang, Z.- L. ( 2013 ). Technical description of version 4.5 of the community land model (CLM). UCAR/NCAR.
dc.identifier.citedreferencePachzelt, A., Forrest, M., Rammig, A., Higgins, S. I., & Hickler, T. ( 2015 ). Potential impact of large ungulate grazers on African vegetation, carbon storage and fire regimes. Global Ecology and Biogeography, 24 ( 9 ), 991 - 1002.
dc.identifier.citedreferencePaz, H., Vega- Ramos, F., & Arreola- Villa, F. ( 2018 ). Understanding hurricane resistance and resilience in tropical dry forest trees: A functional traits approach. Forest Ecology and Management, 426, 115 - 122.
dc.identifier.citedreferencePeñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández- Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., & Sardans, J. ( 2017 ). Shifting from a fertilization- dominated to a warming- dominated period. Nature Ecology and Evolution, 1 ( 10 ), 1438 - 1445.
dc.identifier.citedreferencePoorter, L., Bongers, F., Sterck, F. J., & Woll, H. ( 2005 ). Beyond the regeneration phase: Differentiation of height- light trajectories among tropical tree species. Journal of Ecology, 93 ( 2 ), 256 - 267.
dc.identifier.citedreferencePowell, T. L., Koven, C. D., Johnson, D. J., Faybishenko, B., Fisher, R. A., Knox, R. G., McDowell, N. G., Condit, R., Hubbell, S. P., Wright, S. J., Chambers, J. Q., & Kueppers, L. M. ( 2018 ). Variation in hydroclimate sustains tropical forest biomass and promotes functional diversity. The New Phytologist, 219 ( 3 ), 932 - 946.
dc.identifier.citedreferencePurves, D. W., Lichstein, J. W., Strigul, N., & Pacala, S. W. ( 2008 ). Predicting and understanding forest dynamics using a simple tractable model. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 44 ), 17018 - 17022.
dc.identifier.citedreferenceRamos, P., Villareal, P., Condit, R., Cushman, K., & Muller- Landau, H. ( 2022 ). Annual dendrometer data from the Barro Colorado Island 50- ha forest dynamics plot for 2015- 2020. Smithsonian Figshare. https://doi.org/10.25573/data.19985066
dc.identifier.citedreferenceReis, S. M., Marimon, B. S., Esquivel- Muelbert, A., Marimon, B. H., Morandi, P. S., Elias, F., de Oliveira, E. A., Galbraith, D., Feldpausch, T. R., Menor, I. O., Malhi, Y., & Phillips, O. l. L. ( 2022 ). Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 110, 876 - 888.
dc.identifier.citedreferenceReis, S. M., Marimon, B. S., Morandi, P. S., Elias, F., Esquivel- Muelbert, A., Marimon Junior, B. H., Fauset, S., Oliveira, E. A., Heijden, G. M. F., Galbraith, D., Feldpausch, T. R., & Phillips, O. L. ( 2020 ). Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 108 ( 6 ), 2184 - 2197.
dc.identifier.citedreferenceRood, S. B., Patiño, S., Coombs, K., & Tyree, M. T. ( 2000 ). Branch sacrifice: Cavitation- associated drought adaptation of riparian cottonwoods. Trees, 14 ( 5 ), 0248 - 0257.
dc.identifier.citedreferenceRowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, D. B., Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M., & Meir, P. ( 2015 ). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528 ( 7580 ), 119 - 122.
dc.identifier.citedreferenceSala, A., Woodruff, D. R., & Meinzer, F. C. ( 2012 ). Carbon dynamics in trees: Feast or famine? Tree Physiology, 32 ( 6 ), 764 - 775.
dc.identifier.citedreferenceSeidl R., Klonner G., Rammer W., Essl F., Moreno A., Neumann M., Dullinger S. 2018. Invasive alien pests threaten the carbon stored in Europe’s forests. Nature Communications 9 ( 1 ):1626, 9
dc.identifier.citedreferenceSenf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Hostert, P., & Seidl, R. ( 2018 ). Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nature Communications, 9 ( 1 ), 4978.
dc.identifier.citedreferenceStevens, M. T., Kruger, E. L., & Lindroth, R. L. ( 2008 ). Variation in tolerance to herbivory is mediated by differences in biomass allocation in Aspen. Functional Ecology, 22, 40 - 47.
dc.identifier.citedreferenceTanner, E. V. J., Rodriguez- Sanchez, F., Healey, J. R., Holdaway, R. J., & Bellingham, P. J. ( 2014 ). Long- term hurricane damage effects on tropical forest tree growth and mortality. Ecology, 95 ( 10 ), 2974 - 2983.
dc.identifier.citedreferenceTaylor, S. L., & MacLean, D. A. ( 2009 ). Legacy of insect defoliators: Increased wind- related mortality two decades after a spruce budworm outbreak. Forest Science, 55 ( 3 ), 256 - 267.
dc.identifier.citedreferenceTrenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. ( 2013 ). Global warming and changes in drought. Nature Climate Change, 4 ( 1 ), 17 - 22.
dc.identifier.citedreferenceTrugman, A. T., Detto, M., Bartlett, M. K., Medvigy, D., Anderegg, W. R. L., Schwalm, C., Schaffer, B., & Pacala, S. W. ( 2018 ). Tree carbon allocation explains forest drought- kill and recovery patterns. Ecology Letters, 21 ( 10 ), 1552 - 1560.
dc.identifier.citedreferenceUmaña, M. N., & Arellano, G. ( 2021 ). Legacy effects of drought on tree growth responses to hurricanes. Ecography, 44, 1686 - 1697. https://doi.org/10.1111/ecog.05803
dc.identifier.citedreferenceUriarte, M., Canham, C. D., Thompson, J., & Zimmerman, J. K. ( 2004 ). A neighborhood analysis of tree growth and survival in a hurricane- driven tropical forest. Ecological Monographs, 74 ( 4 ), 591 - 614.
dc.identifier.citedreferenceVer Planck, N. R., & MacFarlane, D. W. ( 2014 ). Modelling vertical allocation of tree stem and branch volume for hardwoods. Forestry, 87 ( 3 ), 459 - 469.
dc.identifier.citedreferenceWesterling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., & Ryan, M. G. ( 2011 ). Continued warming could transform greater Yellowstone fire regimes by mid- 21st century. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 32 ), 13165 - 13170.
dc.identifier.citedreferenceYang, Y., Saatchi, S. S., Xu, L., Yu, Y., Choi, S., Phillips, N., Kennedy, R., Keller, M., Knyazikhin, Y., & Myneni, R. B. ( 2018 ). Post- drought decline of the Amazon carbon sink. Nature Communications, 9 ( 1 ), 3172.
dc.identifier.citedreferenceZuleta, D., Arellano, G., Muller- Landau, H. C., McMahon, S. M., Aguilar, S., Bunyavejchewin, S., Cardenas, D., Chang- Yang, C.- H., Duque, A., Mitre, D., Sasardin, M., Perez, R., Sun, I.- F., Yao, T. L., & Davies, S. J. ( 2021 ). Individual tree damage dominates mortality risk factors across six tropical forests. The New Phytologist, 233, 705 - 721.
dc.identifier.citedreferenceZuleta, D., Krishna Moorthy, S. M., Arellano, G., Verbeeck, H., & Davies, S. J. ( 2022 ). Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management, 508, 120056.
dc.identifier.citedreferenceAdams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz, T. E., Allen, C. D., Anderegg, L. D. L., Barron- Gafford, G. A., Beerling, D. J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins, A. D., Dickman, L. T., - ¦ McDowell, N. G. ( 2017 ). A multi- species synthesis of physiological mechanisms in drought- induced tree mortality. Nature Ecology and Evolution, 1 ( 9 ), 1285 - 1291.
dc.identifier.citedreferenceAnderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., McDowell, N., Pan, Y., Raffa, K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C., & Zeppel, M. ( 2015 ). Tree mortality from drought, insects, and their interactions in a changing climate. The New Phytologist, 208 ( 3 ), 674 - 683.
dc.identifier.citedreferenceAnderegg, W. R. L., Plavcová, L., Anderegg, L. D. L., Hacke, U. G., Berry, J. A., & Field, C. B. ( 2013 ). Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die- off and portends increased future risk. Global Change Biology, 19 ( 4 ), 1188 - 1196.
dc.identifier.citedreferenceAraujo, R. F., Grubinger, S., Celes, C. H. S., Negrón- Juárez, R. I., Garcia, M., Dandois, J. P., & Muller- Landau, H. C. ( 2021 ). Strong temporal variation in treefall and branchfall rates in a tropical forest is explained by rainfall: Results from five years of monthly drone data for a 50- ha plot. Biogeosciences, 18 ( 24 ), 6517 - 6531.
dc.identifier.citedreferenceArellano, G., Medina, N. G., Tan, S., Mohamad, M., & Davies, S. J. ( 2019 ). Crown damage and the mortality of tropical trees. The New Phytologist, 221 ( 1 ), 169 - 179.
dc.identifier.citedreferenceArellano, G., Zuleta, D., & Davies, S. J. ( 2021 ). Tree death and damage: A standardized protocol for frequent surveys in tropical forests. Journal of Vegetation Science, 32 ( 1 ), e12981. https://doi.org/10.1111/jvs.12981
dc.identifier.citedreferenceBalaguru, K., Foltz, G. R., & Leung, L. R. ( 2018 ). Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophysical Research Letters, 45, 4238 - 4247.  https://doi.org/10.1029/2018GL077597
dc.identifier.citedreferenceBerdanier, A. B., & Clark, J. S. ( 2016 ). Multiyear drought- induced morbidity preceding tree death in southeastern U.S. forests. Ecological Applications, 26 ( 1 ), 17 - 23.
dc.identifier.citedreferenceBlessing, C. H., Werner, R. A., Siegwolf, R., & Buchmann, N. ( 2015 ). Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiology, 35 ( 6 ), 585 - 598.
dc.identifier.citedreferenceBohlman, S., & Pacala, S. ( 2012 ). A forest structure model that determines crown layers and partitions growth and mortality rates for landscape- scale applications of tropical forests. Journal of Ecology, 100 ( 2 ), 508 - 518.
dc.identifier.citedreferenceBrokaw, N. V. L., & Grear, J. S. ( 1991 ). Forest structure before and after hurricane Hugo at three elevations in the Luquillo mountains, Puerto Rico. Biotropica, 23 ( 4 ), 386.
dc.identifier.citedreferenceBrokaw, N. V. L. ( 1987 ). Gap- phase regeneration of three Pioneer tree species in a tropical Forest. Journal of Ecology, 75 ( 1 ), 9.
dc.identifier.citedreferenceCarnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. ( 2011 ). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change- type drought. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 4 ), 1474 - 1478.
dc.identifier.citedreferenceChambers, J. Q., Santos, J. d., Ribeiro, R. J., & Higuchi, N. ( 2001 ). Tree damage, allometric relationships, and above- ground net primary production in Central Amazon forest. Forest Ecology and Management, 152 ( 1- 3 ), 73 - 84.
dc.identifier.citedreferenceChave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. ( 2003 ). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91 ( 2 ), 240 - 252.
dc.identifier.citedreferenceChave, J., Condit, R., Muller- Landau, H. C., Thomas, S. C., Ashton, P. S., Bunyavejchewin, S., Co, L. L., Dattaraja, H. S., Davies, S. J., Esufali, S., Ewango, C. E. N., Feeley, K. J., Foster, R. B., Gunatilleke, N., Gunatilleke, S., Hall, P., Hart, T. B., Hernández, C., Hubbell, S. P., - ¦ Losos, E. C. ( 2008 ). Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology, 6 ( 3 ), e45.
dc.identifier.citedreferenceCondit, R. ( 1998 ). The CTFS and the standardization of methodology. In Tropical Forest Census Plots (pp. 3 - 7 ). Springer Berlin Heidelberg.
dc.identifier.citedreferenceCondit, R., Pérez, R., Aguilar, S., Lao, S., Foster, R., & Hubbell, S. ( 2019 ). Complete data from the Barro Colorado 50- ha plot: 423617 trees, 35- years, Dryad, Dataset. https://doi.org/10.15146/5xcp- 0d46
dc.identifier.citedreferenceCsilléry, K., Kunstler, G., Courbaud, B., Allard, D., Lassègues, P., Haslinger, K., & Gardiner, B. ( 2017 ). Coupled effects of wind- storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Global Change Biology, 23 ( 12 ), 5092 - 5107.
dc.identifier.citedreferenceCurran, T. J., Brown, R. L., Edwards, E., Hopkins, K., Kelley, C., McCarthy, E., Pounds, E., Solan, R., & Wolf, J. ( 2008 ). Plant functional traits explain interspecific differences in immediate cyclone damage to trees of an endangered rainforest community in North Queensland. Austral Ecology, 33 ( 4 ), 451 - 461.
dc.identifier.citedreferenceDickman, L. T., McDowell, N. G., Grossiord, C., Collins, A. D., Wolfe, B. T., Detto, M., Wright, S. J., Medina- Vega, J. A., Goodsman, D., Rogers, A., Serbin, S. P., Wu, J., Ely, K. S., Michaletz, S. T., Xu, C., Kueppers, L., & Chambers, J. Q. ( 2019 ). Homoeostatic maintenance of nonstructural carbohydrates during the 2015- 2016 El Niño drought across a tropical forest precipitation gradient. Plant, Cell and Environment, 42 ( 5 ), 1705 - 1714.
dc.identifier.citedreferenceDietze, M. C., & Matthes, J. H. ( 2014 ). A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters, 17 ( 11 ), 1418 - 1426.
dc.identifier.citedreferenceDrüke, M., Forkel, M., von Bloh, W., Sakschewski, B., Cardoso, M., Bustamante, M., Kurths, J., & Thonicke, K. ( 2019 ). Improving the LPJmL4- SPITFIRE vegetation- fire model for South America using satellite data. Geoscientific Model Development, 12 ( 12 ), 5029 - 5054.
dc.identifier.citedreferenceDuque, A., Muller- Landau, H. C., Valencia, R., Cardenass, D., Davies, S., de Oliveira, A., Pérez, à . J., Romero- Saltos, H., & Vicentini, A. ( 2017 ). Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra- firme forest dynamics plots. Biodiversity and Conservation, 26, 669 - 686. https://doi.org/10.1007/s10531- 016- 1265- 9
dc.identifier.citedreferenceDybzinski, R., Farrior, C., Wolf, A., Reich, P. B., & Pacala, S. W. ( 2011 ). Evolutionary stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: An analytically tractable, individual- based model and quantitative comparison to data. The American Naturalist, 177 ( 2 ), 153 - 166.
dc.identifier.citedreferenceE3SM Project DOE. ( 2018 ). Energy exascale earth system model.
dc.identifier.citedreferenceEyles, A., Pinkard, E. A., & Mohammed, C. ( 2009 ). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29 ( 6 ), 753 - 764.
dc.identifier.citedreferenceFarrior, C. E., Bohlman, S. A., Hubbell, S., & Pacala, S. W. ( 2016 ). Dominance of the suppressed: Power- law size structure in tropical forests. Science, 351 ( 6269 ), 155 - 157.
dc.identifier.citedreferenceFarrior, C. E., Dybzinski, R., Levin, S. A., & Pacala, S. W. ( 2013 ). Competition for water and light in closed- canopy forests: A tractable model of carbon allocation with implications for carbon sinks. The American Naturalist, 181 ( 3 ), 314 - 330.
dc.identifier.citedreferenceFATES Development Team. ( 2020 ). The functionally assembled terrestrial ecosystem simulator (FATES) (sci.1.35.5_api.11.0.0). Zenodo. https://doi.org/10.5281/zenodo.3825474
dc.identifier.citedreferenceFisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller- Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., - ¦ Moorcroft, P. R. ( 2018 ). Vegetation demographics in earth system models: A review of progress and priorities. Global Change Biology, 24 ( 1 ), 35 - 54.
dc.identifier.citedreferenceFisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., & Bonan, G. ( 2015 ). Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 8 ( 11 ), 3593 - 3619.
dc.identifier.citedreferenceFisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P., & Ian Woodward, F. ( 2010 ). Assessing uncertainties in a second- generation dynamic vegetation model caused by ecological scale limitations. The New Phytologist, 187 ( 3 ), 666 - 681.
dc.identifier.citedreferenceFlake, S. W., Abreu, R. C. R., Durigan, G., & Hoffmann, W. A. ( 2021 ). Savannas are not old fields: Functional trajectories of forest expansion in a fire- suppressed Brazilian savanna are driven by habitat generalists. Functional Ecology, 35, 1797 - 1809.
dc.identifier.citedreferenceFriend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P., Schaphoff, S., - ¦ Woodward, I. ( 2014 ). Carbon residence time dominates un certainty in terrestrial vegetation responses to future climate and atmospheric CO 2. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 9 ), 3280 - 3285.
dc.identifier.citedreferenceGatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L. G., Tejada, G., Aragao, L. E. O. C., Nobre, C., Peters,  W., Marani, L., Arai, E., Sanches, A. H., Correa, S. M., Anderson, L., Randow, C. V., Correia, C. S. C., Crispim, S. P., & Neves, R. A. L. ( 2021 ). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595 ( 7867 ), 388 - 393.
dc.identifier.citedreferenceGaylord, M. L., Kolb, T. E., Pockman, W. T., Plaut, J. A., Yepez, E. A., Macalady, A. K., Pangle, R. E., & McDowell, N. G. ( 2013 ). Drought predisposes piñon- juniper woodlands to insect attacks and mortality. The New Phytologist, 198 ( 2 ), 567 - 578.
dc.identifier.citedreferenceGora, E. M., Kneale, R. C., Larjavaara, M., & Muller- Landau, H. C. ( 2019 ). Dead wood necromass in a moist tropical forest: Stocks, fluxes, and spatiotemporal variability. Ecosystems, 22, 1 - 17.
dc.identifier.citedreferenceHartmann, H., & Trumbore, S. ( 2016 ). Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. The New Phytologist, 211 ( 2 ), 386 - 403.
dc.identifier.citedreferenceHenkel, T. K., Chambers, J. Q., & Baker, D. A. ( 2016 ). Delayed tree mortality and Chinese tallow ( Triadica sebifera ) population explosion in a Louisiana bottomland hardwood forest following hurricane Katrina. Forest Ecology and Management, 378, 222 - 232.
dc.identifier.citedreferenceHerguido, E., Granda, E., Benavides, R., García- Cervigón, A. I., Camarero, J. J., & Valladares, F. ( 2016 ). Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. Forest Ecology and Management, 363, 149 - 158.
dc.identifier.citedreferenceHogan, J., Zimmerman, J., Thompson, J., Uriarte, M., Swenson, N., Condit, R., Hubbell, S., Johnson, D. J., Sun, I. F., Chang- Yang, C.- H., Su, S.- H., Ong, P., Rodriguez, L., Monoy, C. C., Yap, S., & Davies, S. J. ( 2018 ). The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests, 9 ( 7 ), 404.
dc.identifier.citedreferenceHurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., - ¦ Zhang, X. ( 2020 ). Harmonization of global land use change and management for the period 850- 2100 (LUH2) for CMIP6. Geoscientific Model Development, 13 ( 11 ), 5425 - 5464.
dc.identifier.citedreferenceJönsson, A. M., Schroeder, L. M., Lagergren, F., Anderbrant, O., & Smith, B. ( 2012 ). Guess the impact of Ips typographus- An ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agricultural and Forest Meteorology, 166- 167, 188 - 200.
dc.identifier.citedreferenceKoven, C. D., Chambers, J. Q., Georgiou, K., Knox, R., Negron- Juarez, R., Riley, W. J., Arora, V. K., Brovkin, V., Friedlingstein, P., & Jones, C. D. ( 2015 ). Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 earth system models. Biogeosciences, 12 ( 17 ), 5211 - 5228.
dc.identifier.citedreferenceKoven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenoch, M., Kueppers, L. M., Lemieux, G., Massoud,  E., McDowell, N. G., Muller- Landau, H. C., Needham, J. F., Norby, R. J., - ¦ Xu, C. ( 2020 ). Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (FATES) at Barro Colorado Island. Panama. Biogeosciences, 17 ( 11 ), 3017 - 3044.
dc.identifier.citedreferenceLagergren, F., Jönsson, A. M., Blennow, K., & Smith, B. ( 2012 ). Implementing storm damage in a dynamic vegetation model for regional applications in Sweden. Ecological Modelling, 247, 71 - 82.
dc.identifier.citedreferenceLawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., - ¦ Zeng, X. ( 2019 ). The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245 - 4287.
dc.identifier.citedreferenceLiu, X., Zeng, X., Zou, X., González, G., Wang, C., & Yang, S. ( 2018 ). Litterfall production prior to and during hurricanes Irma and Maria in four Puerto Rican forests. Forests, 9 ( 6 ), 367.
dc.identifier.citedreferenceLodge, D. J., Scatena, F. N., Asbury, C. E., & Sanchez, M. J. ( 1991 ). Fine litterfall and related nutrient inputs resulting from hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica, 23 ( 4 ), 336.
dc.identifier.citedreferenceMalhi, Y., Farfán Amézquita, F., Doughty, C. E., Silva- Espejo, J. E., Girardin, C. A. J., Metcalfe, D. B., Aragao, L. E. O. C., Huaraca- Quispe, L. P., Alzamora- Taype, I., Eguiluz- Mora, L., Marthews, T. R., Halladay, K., Quesada, C. A., Robertson, A. L., Fisher, J. B., Zaragoza- Castells, J., Rojas- Villagra, C. M., Pelaez- Tapia, Y., - ¦ Phillips, O. L. ( 2014 ). The productivity, metabolism and carbon cycle of two lowland tropical forest plots in South- Western Amazonia. Peru. Plant Ecology and Diversity, 7 ( 1- 2 ), 85 - 105.
dc.identifier.citedreferenceMalhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., Huaraca Huasco, W., Silva- Espejo, J. E., Aguilla- Pasquell, J., Farfán Amézquita, F., Aragão, L. E. O. C., Guerrieri, R., Ishida, F. Y., Bahar, N. H. A., Farfan- Rios, W., Phillips, O. L., Meir, P., & Silman, M. ( 2017 ). The variation of productivity and its allocation along a tropical elevation gradient: A whole carbon budget perspective. The New Phytologist, 214 ( 3 ), 1019 - 1032.
dc.identifier.citedreferenceMartínez Cano, I., Shevliakova, E., Malyshev, S., Wright, S. J., Detto, M., Pacala, S. W., & Muller- Landau, H. C. ( 2020 ). Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA- TV). Global Change Biology, 26 ( 8 ), 4478 - 4494.
dc.identifier.citedreferenceMarvin, D. C., & Asner, G. P. ( 2016 ). Branchfall dominates annual carbon flux across lowland Amazonian forests. Environmental Research Letters, 11 ( 9 ), 094027.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.